Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

C*-algebras associated to homeomorphisms twisted by vector bundles over finite dimensional spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582707" target="_blank" >RIV/67985840:_____/24:00582707 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21240/24:00372448

  • Výsledek na webu

    <a href="https://doi.org/10.1090/tran/8900" target="_blank" >https://doi.org/10.1090/tran/8900</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1090/tran/8900" target="_blank" >10.1090/tran/8900</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    C*-algebras associated to homeomorphisms twisted by vector bundles over finite dimensional spaces

  • Popis výsledku v původním jazyce

    In this paper we study Cuntz-Pimsner algebras associated to C*-correspondences over commutative C*-algebras from the point of view of the C*-algebra classification programme. We show that when the correspondence comes from an aperiodic homeomorphism of a finite dimensional infinite compact metric space X twisted by a vector bundle, the resulting Cuntz- Pimsner algebras have finite nuclear dimension. When the homeomorphism is minimal, this entails classification of these C*-algebras by the Elliott invariant. This establishes a dichotomy: when the vector bundle has rank one, the Cuntz-Pimsner algebra has stable rank one. Otherwise, it is purely infinite. For a Cuntz-Pimsner algebra of a minimal homeomorphism of an infinite compact metric space X twisted by a line bundle over X, we introduce orbit breaking subalgebras. With no assumptions on the dimension of X, we show that they are centrally large subalgebras and hence simple and stably finite. When the dimension of X is finite, they are furthermore Z-stable and hence classified by the Elliott invariant.

  • Název v anglickém jazyce

    C*-algebras associated to homeomorphisms twisted by vector bundles over finite dimensional spaces

  • Popis výsledku anglicky

    In this paper we study Cuntz-Pimsner algebras associated to C*-correspondences over commutative C*-algebras from the point of view of the C*-algebra classification programme. We show that when the correspondence comes from an aperiodic homeomorphism of a finite dimensional infinite compact metric space X twisted by a vector bundle, the resulting Cuntz- Pimsner algebras have finite nuclear dimension. When the homeomorphism is minimal, this entails classification of these C*-algebras by the Elliott invariant. This establishes a dichotomy: when the vector bundle has rank one, the Cuntz-Pimsner algebra has stable rank one. Otherwise, it is purely infinite. For a Cuntz-Pimsner algebra of a minimal homeomorphism of an infinite compact metric space X twisted by a line bundle over X, we introduce orbit breaking subalgebras. With no assumptions on the dimension of X, we show that they are centrally large subalgebras and hence simple and stably finite. When the dimension of X is finite, they are furthermore Z-stable and hence classified by the Elliott invariant.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    American Mathematical Society. Transactions

  • ISSN

    0002-9947

  • e-ISSN

    1088-6850

  • Svazek periodika

    377

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    44

  • Strana od-do

    1597-1640

  • Kód UT WoS článku

    001150330300001

  • EID výsledku v databázi Scopus

    2-s2.0-85185603548