Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583300" target="_blank" >RIV/67985840:_____/24:00583300 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/24:00378822
Výsledek na webu
<a href="http://dx.doi.org/10.14311/TPFM.2024.031" target="_blank" >http://dx.doi.org/10.14311/TPFM.2024.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2024.031" target="_blank" >10.14311/TPFM.2024.031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Popis výsledku v původním jazyce
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown.
Název v anglickém jazyce
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Popis výsledku anglicky
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Topical Problems of Fluid Mechanics
ISBN
978-80-87012-88-8
ISSN
2336-5781
e-ISSN
—
Počet stran výsledku
8
Strana od-do
232-239
Název nakladatele
Institute of Thermomechanics AS CR, v. v. i.
Místo vydání
Prague
Místo konání akce
Prague
Datum konání akce
21. 2. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001242655400031