Verification of initial-and-final-state opacity for unambiguous weighted automata
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00585936" target="_blank" >RIV/67985840:_____/24:00585936 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.isatra.2024.03.019" target="_blank" >https://doi.org/10.1016/j.isatra.2024.03.019</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.isatra.2024.03.019" target="_blank" >10.1016/j.isatra.2024.03.019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Verification of initial-and-final-state opacity for unambiguous weighted automata
Popis výsledku v původním jazyce
Initial-and-final-state opacity (IFO) is a type of opacity that characterizes a system's ability to prevent the disclosure of information about whether its evolution starts at an initial state and ends at a final state. In this paper, we extend the notion of IFO from the logical automata to the framework of unambiguous weighted automata (UWAs) that do not contain any cycle composed solely of unobservable events. For the verification of IFO, we first construct a labeled observer and a trellis-based initial state estimator for a given UWA. Even though the labeled observer has much smaller state space compared to the trellis-based initial state estimator, it cannot be used when the set of secret state pairs or the set of non-secret state pairs is not in the Cartesian product form. Based on the labeled observer, we present a more efficient method to verify IFO in the case when the set of non-secret state pairs is expressed as a Cartesian product, regardless of whether the set of secret state pairs is in the Cartesian product form. Furthermore, we use the labeled observer to verify initial-state opacity for a UWA.
Název v anglickém jazyce
Verification of initial-and-final-state opacity for unambiguous weighted automata
Popis výsledku anglicky
Initial-and-final-state opacity (IFO) is a type of opacity that characterizes a system's ability to prevent the disclosure of information about whether its evolution starts at an initial state and ends at a final state. In this paper, we extend the notion of IFO from the logical automata to the framework of unambiguous weighted automata (UWAs) that do not contain any cycle composed solely of unobservable events. For the verification of IFO, we first construct a labeled observer and a trellis-based initial state estimator for a given UWA. Even though the labeled observer has much smaller state space compared to the trellis-based initial state estimator, it cannot be used when the set of secret state pairs or the set of non-secret state pairs is not in the Cartesian product form. Based on the labeled observer, we present a more efficient method to verify IFO in the case when the set of non-secret state pairs is expressed as a Cartesian product, regardless of whether the set of secret state pairs is in the Cartesian product form. Furthermore, we use the labeled observer to verify initial-state opacity for a UWA.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Isa Transactions
ISSN
0019-0578
e-ISSN
1879-2022
Svazek periodika
148
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
237-246
Kód UT WoS článku
001241318800001
EID výsledku v databázi Scopus
2-s2.0-85189948212