On a nonlocal two-phase flow with convective heat transfer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586510" target="_blank" >RIV/67985840:_____/24:00586510 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00332-024-10042-6" target="_blank" >https://doi.org/10.1007/s00332-024-10042-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00332-024-10042-6" target="_blank" >10.1007/s00332-024-10042-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On a nonlocal two-phase flow with convective heat transfer
Popis výsledku v původním jazyce
We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection, the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.
Název v anglickém jazyce
On a nonlocal two-phase flow with convective heat transfer
Popis výsledku anglicky
We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection, the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Nonlinear Science
ISSN
0938-8974
e-ISSN
1432-1467
Svazek periodika
34
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
32
Strana od-do
65
Kód UT WoS článku
001229357600001
EID výsledku v databázi Scopus
2-s2.0-85194093407