Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On a nonlocal two-phase flow with convective heat transfer

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586510" target="_blank" >RIV/67985840:_____/24:00586510 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00332-024-10042-6" target="_blank" >https://doi.org/10.1007/s00332-024-10042-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00332-024-10042-6" target="_blank" >10.1007/s00332-024-10042-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On a nonlocal two-phase flow with convective heat transfer

  • Popis výsledku v původním jazyce

    We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection, the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.

  • Název v anglickém jazyce

    On a nonlocal two-phase flow with convective heat transfer

  • Popis výsledku anglicky

    We study a system describing the dynamics of a two-phase flow of incompressible viscous fluids influenced by the convective heat transfer of Caginalp-type. The separation of the fluids is expressed by the order parameter which is of diffuse interface and is known as the Cahn–Hilliard model. We shall consider a nonlocal version of the Cahn–Hilliard model which replaces the gradient term in the free energy functional into a spatial convolution operator acting on the order parameter and incorporate with it a potential that is assumed to satisfy an arbitrary polynomial growth. The order parameter is influenced by the fluid velocity by means of convection, the temperature affects the interface via a modification of the Landau–Ginzburg free energy. The fluid is governed by the Navier–Stokes equations which is affected by the order parameter and the temperature by virtue of the capillarity between the two fluids. The temperature on the other hand satisfies a parabolic equation that considers latent heat due to phase transition and is influenced by the fluid via convection. The goal of this paper is to prove the global existence of weak solutions and show that, for an appropriate choice of sequence of convolutional kernels, the solutions of the nonlocal system converge to its local version.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Nonlinear Science

  • ISSN

    0938-8974

  • e-ISSN

    1432-1467

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    32

  • Strana od-do

    65

  • Kód UT WoS článku

    001229357600001

  • EID výsledku v databázi Scopus

    2-s2.0-85194093407