Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00604957" target="_blank" >RIV/67985840:_____/24:00604957 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10468-024-10296-4" target="_blank" >https://doi.org/10.1007/s10468-024-10296-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10468-024-10296-4" target="_blank" >10.1007/s10468-024-10296-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity
Popis výsledku v původním jazyce
We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.
Název v anglickém jazyce
Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity
Popis výsledku anglicky
We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algebras and Representation Theory
ISSN
1386-923X
e-ISSN
1572-9079
Svazek periodika
27
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
27
Strana od-do
2267-2293
Kód UT WoS článku
001371505800001
EID výsledku v databázi Scopus
2-s2.0-85211779250