Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00604957" target="_blank" >RIV/67985840:_____/24:00604957 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s10468-024-10296-4" target="_blank" >https://doi.org/10.1007/s10468-024-10296-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10468-024-10296-4" target="_blank" >10.1007/s10468-024-10296-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity

  • Popis výsledku v původním jazyce

    We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.

  • Název v anglickém jazyce

    Flat quasi-coherent sheaves as directed colimits, and quasi-coherent cotorsion periodicity

  • Popis výsledku anglicky

    We show that every flat quasi-coherent sheaf on a quasi-compact quasi-separated scheme is a directed colimit of locally countably presentable flat quasi-coherent sheaves. More generally, the same assertion holds for any countably quasi-compact, countably quasi-separated scheme. Moreover, for three categories of complexes of flat quasi-coherent sheaves, we show that all complexes in the category can be obtained as directed colimits of complexes of locally countably presentable flat quasi-coherent sheaves from the same category. In particular, on a quasi-compact semi-separated scheme, every flat quasi-coherent sheaf is a directed colimit of flat quasi-coherent sheaves of finite projective dimension. In the second part of the paper, we discuss cotorsion periodicity in category-theoretic context, generalizing an argument of Bazzoni, Cortés-Izurdiaga, and Estrada. As the main application, we deduce the assertion that any cotorsion-periodic quasi-coherent sheaf on a quasi-compact semi-separated scheme is cotorsion.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Algebras and Representation Theory

  • ISSN

    1386-923X

  • e-ISSN

    1572-9079

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    27

  • Strana od-do

    2267-2293

  • Kód UT WoS článku

    001371505800001

  • EID výsledku v databázi Scopus

    2-s2.0-85211779250