Dynamika a struktura hydratační vodz na rutilových a kasiteritových nanočásticích studované kvazielastickou neutronovou difrakcí a molekularně dynamickými simulacemi
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F07%3A00099464" target="_blank" >RIV/67985858:_____/07:00099464 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamics and Structure of Hydration Water on Rutile and Cassiterite Nanopowders Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations
Popis výsledku v původním jazyce
Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers revealed the diffusion dynamics of hydration water in nanopowder rutile (TiO2) and cassiterite (SnO2). When hydrated under ambient conditions, the nanopowders had similar levels of hydration: about 3.5 (OH/H2O) molecules per Ti2O4 surface structural unit of TiO2 and about 4.0 (OH/H2O) molecules per Sn2O4 surface unit of SnO2. Molecular dynamics simulations at these levels of hydration indicate three structurally distinct sorbed water layers. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. In TiO2 hydrationwater, the more strongly bound water molecules in the second layer exhibited slow nanosecond dynamics characterized by super-Arrhenius behavior above 220 K and the dynamic transition to Arrhenius behavior at lower temperatures.
Název v anglickém jazyce
Dynamics and Structure of Hydration Water on Rutile and Cassiterite Nanopowders Studied by Quasielastic Neutron Scattering and Molecular Dynamics Simulations
Popis výsledku anglicky
Quasielastic neutron scattering (QENS) experiments carried out using time-of-flight and backscattering neutron spectrometers revealed the diffusion dynamics of hydration water in nanopowder rutile (TiO2) and cassiterite (SnO2). When hydrated under ambient conditions, the nanopowders had similar levels of hydration: about 3.5 (OH/H2O) molecules per Ti2O4 surface structural unit of TiO2 and about 4.0 (OH/H2O) molecules per Sn2O4 surface unit of SnO2. Molecular dynamics simulations at these levels of hydration indicate three structurally distinct sorbed water layers. Three hydration water diffusion components, on the time scale of a picosecond, tens of picoseconds, and a nanosecond could be extracted from the QENS spectra of both oxides. In TiO2 hydrationwater, the more strongly bound water molecules in the second layer exhibited slow nanosecond dynamics characterized by super-Arrhenius behavior above 220 K and the dynamic transition to Arrhenius behavior at lower temperatures.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry C
ISSN
1932-7447
e-ISSN
—
Svazek periodika
111
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
4328-4341
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—