Transport of Gas Molecules through Dense Membranes and Intensification of Mass Transfer by Radiation.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F19%3A00501582" target="_blank" >RIV/67985858:_____/19:00501582 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0294047" target="_blank" >http://hdl.handle.net/11104/0294047</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cep.2019.01.013" target="_blank" >10.1016/j.cep.2019.01.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transport of Gas Molecules through Dense Membranes and Intensification of Mass Transfer by Radiation.
Popis výsledku v původním jazyce
It is known that fouling of membranes decreases their performance. New modern types of membranes which are used for separation of gas mixtures (e.g. supported ionic liquid and graphene-based membranes) require the methods for cleaning which differ from the methods used in classical membrane technology (e.g. backflushing). Mass transfer in these membranes can be blocked by the adsorbed foreign gas molecules or/and aerosol nanoparticles which are present in a gas phase near the feed side surface of the membranes. The new method of the intensification of mass transfer through the membranes by resonance radiation is considered. It is shown that resonance radiation, leading to selective excitation of the foreign gas molecules and a change in their sticking coefficient and the rate coefficient of desorption as well as to heating of the membrane, can reduce the affinity constant of the foreign gas that in turn decreases the surface coverage and the blocking effect of the adsorbed foreign gas molecules. A model is given for the transport of gas molecules through a dense flat membrane with the deposition of aerosol particles on the feed side surface of the membrane.
Název v anglickém jazyce
Transport of Gas Molecules through Dense Membranes and Intensification of Mass Transfer by Radiation.
Popis výsledku anglicky
It is known that fouling of membranes decreases their performance. New modern types of membranes which are used for separation of gas mixtures (e.g. supported ionic liquid and graphene-based membranes) require the methods for cleaning which differ from the methods used in classical membrane technology (e.g. backflushing). Mass transfer in these membranes can be blocked by the adsorbed foreign gas molecules or/and aerosol nanoparticles which are present in a gas phase near the feed side surface of the membranes. The new method of the intensification of mass transfer through the membranes by resonance radiation is considered. It is shown that resonance radiation, leading to selective excitation of the foreign gas molecules and a change in their sticking coefficient and the rate coefficient of desorption as well as to heating of the membrane, can reduce the affinity constant of the foreign gas that in turn decreases the surface coverage and the blocking effect of the adsorbed foreign gas molecules. A model is given for the transport of gas molecules through a dense flat membrane with the deposition of aerosol particles on the feed side surface of the membrane.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-05421S" target="_blank" >GA17-05421S: Nové účinné membrány pro efektivní separace H2 / CO2 (HySME)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering and Processing: Process Intensification
ISSN
0255-2701
e-ISSN
—
Svazek periodika
137
Číslo periodika v rámci svazku
March 2019
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
6
Strana od-do
48-53
Kód UT WoS článku
000464089000006
EID výsledku v databázi Scopus
2-s2.0-85061525373