Geometry-induced Interface Pinning at Completely Wet Walls.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F19%3A00505858" target="_blank" >RIV/67985858:_____/19:00505858 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/19:43919097
Výsledek na webu
<a href="https://arxiv.org/pdf/1904.13114.pdf" target="_blank" >https://arxiv.org/pdf/1904.13114.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.99.040801" target="_blank" >10.1103/PhysRevE.99.040801</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometry-induced Interface Pinning at Completely Wet Walls.
Popis výsledku v původním jazyce
We study complete wetting of solid walls that are patterned by parallel nanogrooves of depth D and width L with a periodicity of 2L. The wall is formed of a material which interacts with the fluid via a long-range potential and exhibits first-order wetting transition at temperature T-w, should the wall be planar. Using a nonlocal density functional theory we show that at a fixed temperature T > T-w the process of complete wetting depends sensitively on two microscopic length scales L-c(+) and L-c(-). If the corrugation parameter L is greater than L-c(+), the process is continuous similar to complete wetting on a planar wall. For L-c(-) < L < L-c(+), the complete wetting exhibits first-order depinning transition corresponding to an abrupt unbinding of the liquid-gas interface from the wall. Finally, for L < L-c(-) the interface remains pinned at the wall even at bulk liquid-gas coexistence. This implies that nanomodification of substrate surfaces can always change their wetting character from hydrophilic into hydrophobic, in direct contrast to the macroscopic Wenzel law. The resulting surface phase diagram reveals a close analogy between the depinning and prewetting transitions including the nature of their critical points.
Název v anglickém jazyce
Geometry-induced Interface Pinning at Completely Wet Walls.
Popis výsledku anglicky
We study complete wetting of solid walls that are patterned by parallel nanogrooves of depth D and width L with a periodicity of 2L. The wall is formed of a material which interacts with the fluid via a long-range potential and exhibits first-order wetting transition at temperature T-w, should the wall be planar. Using a nonlocal density functional theory we show that at a fixed temperature T > T-w the process of complete wetting depends sensitively on two microscopic length scales L-c(+) and L-c(-). If the corrugation parameter L is greater than L-c(+), the process is continuous similar to complete wetting on a planar wall. For L-c(-) < L < L-c(+), the complete wetting exhibits first-order depinning transition corresponding to an abrupt unbinding of the liquid-gas interface from the wall. Finally, for L < L-c(-) the interface remains pinned at the wall even at bulk liquid-gas coexistence. This implies that nanomodification of substrate surfaces can always change their wetting character from hydrophilic into hydrophobic, in direct contrast to the macroscopic Wenzel law. The resulting surface phase diagram reveals a close analogy between the depinning and prewetting transitions including the nature of their critical points.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-25100S" target="_blank" >GA17-25100S: Geometricky a chemicky strukturované povrchy: od rovnováhy k dynamice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
99
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
040801
Kód UT WoS článku
000466433200001
EID výsledku v databázi Scopus
2-s2.0-85065311826