Generalised dissipative particle dynamics with energy conservation: density- and temperature dependent potentials.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F19%3A00511363" target="_blank" >RIV/67985858:_____/19:00511363 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/19:43894781
Výsledek na webu
<a href="http://hdl.handle.net/11104/0305539" target="_blank" >http://hdl.handle.net/11104/0305539</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c9cp04404c" target="_blank" >10.1039/c9cp04404c</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalised dissipative particle dynamics with energy conservation: density- and temperature dependent potentials.
Popis výsledku v původním jazyce
We present a generalised, energy-conserving dissipative particle dynamics (DPDE) method appropriate for the non-isothermal simulation of particle interaction force fields that are both density- and temperaturedependent. A detailed derivation is formulated in a bottom-up manner by considering the thermodynamics of small systems with the appropriate consideration of the fluctuations. Connected to the local volume is a local density and corresponding local pressure, which is determined from an equation-of-state based force field that depends also on a particle temperature. Compared to the original DPDE method, the formulation of the generalised DPDE method requires a change in the independent variable from the particle internalnenergy to the particle entropy. As part of the re-formulation, the terms dressed particle entropy and the corresponding dressed particle temperature are introduced, which depict the many-body contributions in the local volume. The generalised DPDE method has similarities to the energy form of the smoothed dissipative particle dynamics method, yet fundamental differences exist, which are described in the manuscript. The basic dynamic equations are presented along with practical considerations for implementing the generalised DPDE method, including a numerical integration scheme based on the Shardlow-like splitting algorithm. Demonstrations and validation tests are performed using analytical equation-of-states for the van der Waals and Lennard-Jones fluids. Particle probability distributions are analysed, where excellent agreement with theoretical estimates is demonstrated. As further validation of the generalised DPDE method, both equilibrium and non-equilibrium simulation scenarios are considered, including adiabatic flash heating response and vapour–liquid phase separation.
Název v anglickém jazyce
Generalised dissipative particle dynamics with energy conservation: density- and temperature dependent potentials.
Popis výsledku anglicky
We present a generalised, energy-conserving dissipative particle dynamics (DPDE) method appropriate for the non-isothermal simulation of particle interaction force fields that are both density- and temperaturedependent. A detailed derivation is formulated in a bottom-up manner by considering the thermodynamics of small systems with the appropriate consideration of the fluctuations. Connected to the local volume is a local density and corresponding local pressure, which is determined from an equation-of-state based force field that depends also on a particle temperature. Compared to the original DPDE method, the formulation of the generalised DPDE method requires a change in the independent variable from the particle internalnenergy to the particle entropy. As part of the re-formulation, the terms dressed particle entropy and the corresponding dressed particle temperature are introduced, which depict the many-body contributions in the local volume. The generalised DPDE method has similarities to the energy form of the smoothed dissipative particle dynamics method, yet fundamental differences exist, which are described in the manuscript. The basic dynamic equations are presented along with practical considerations for implementing the generalised DPDE method, including a numerical integration scheme based on the Shardlow-like splitting algorithm. Demonstrations and validation tests are performed using analytical equation-of-states for the van der Waals and Lennard-Jones fluids. Particle probability distributions are analysed, where excellent agreement with theoretical estimates is demonstrated. As further validation of the generalised DPDE method, both equilibrium and non-equilibrium simulation scenarios are considered, including adiabatic flash heating response and vapour–liquid phase separation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007411" target="_blank" >EF17_048/0007411: UniQSurf - Centrum biopovrchů a hybridních funkčních materiálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
45
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
21
Strana od-do
24891-24911
Kód UT WoS článku
000506841300002
EID výsledku v databázi Scopus
2-s2.0-85075720999