Ionic Liquids as Thermal Energy Storage Materials: On the Importance of Reliable Data Analysis in Assessing Thermodynamic Data.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F19%3A00511975" target="_blank" >RIV/67985858:_____/19:00511975 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0302207" target="_blank" >http://hdl.handle.net/11104/0302207</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10953-018-0798-9" target="_blank" >10.1007/s10953-018-0798-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ionic Liquids as Thermal Energy Storage Materials: On the Importance of Reliable Data Analysis in Assessing Thermodynamic Data.
Popis výsledku v původním jazyce
In spite of many statements on the application potential of ionic liquids, these organic salts present both advantages and drawbacks for their possible use in real processes. Nevertheless, they are still an undeniably fascinating class of compounds, both from the fundamental point of view and as promising task-specific materials. For instance, reliable thermal property data seem to be significantly lacking for pure ionic liquids. In addition, to assess the application potential of any material or process, a reliable analysis of experimental data is of key importance, not only to obtain recommended data, but also to be able to identify patterns in structure–property relationships, even if those may not seem evident at first sight. The aim of this work is to assess the potential application of a series of 1-alkyl-3-methylimidazolium saccharinate ionic liquids (alkyl standing for butyl, hexyl, octyl, and decyl) in thermal energy storage. To this end, heat capacity and energy density were determined experimentally by means of differential scanning calorimetry (DSC) and oscillating-tube densitometry. The experimental data were then analyzed by means of advanced data analysis methods based on mathematical gnostics. Based on the thermodynamic data and theory of measurement, mathematical gnostics is a novel non-statistical approach towards data uncertainty. As such it enables us to evaluate measurement uncertainty of statistically non-significant data sets containing as few as four data points. Also, using robust regression algorithms along a gnostic influence function, functional dependencies and structure–property patterns can be reliably determined.
Název v anglickém jazyce
Ionic Liquids as Thermal Energy Storage Materials: On the Importance of Reliable Data Analysis in Assessing Thermodynamic Data.
Popis výsledku anglicky
In spite of many statements on the application potential of ionic liquids, these organic salts present both advantages and drawbacks for their possible use in real processes. Nevertheless, they are still an undeniably fascinating class of compounds, both from the fundamental point of view and as promising task-specific materials. For instance, reliable thermal property data seem to be significantly lacking for pure ionic liquids. In addition, to assess the application potential of any material or process, a reliable analysis of experimental data is of key importance, not only to obtain recommended data, but also to be able to identify patterns in structure–property relationships, even if those may not seem evident at first sight. The aim of this work is to assess the potential application of a series of 1-alkyl-3-methylimidazolium saccharinate ionic liquids (alkyl standing for butyl, hexyl, octyl, and decyl) in thermal energy storage. To this end, heat capacity and energy density were determined experimentally by means of differential scanning calorimetry (DSC) and oscillating-tube densitometry. The experimental data were then analyzed by means of advanced data analysis methods based on mathematical gnostics. Based on the thermodynamic data and theory of measurement, mathematical gnostics is a novel non-statistical approach towards data uncertainty. As such it enables us to evaluate measurement uncertainty of statistically non-significant data sets containing as few as four data points. Also, using robust regression algorithms along a gnostic influence function, functional dependencies and structure–property patterns can be reliably determined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Solution Chemistry
ISSN
0095-9782
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
949-961
Kód UT WoS článku
000478750000003
EID výsledku v databázi Scopus
2-s2.0-85053280763