Symmetry-breaking morphological transitions at chemically nanopatterned walls.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F19%3A00518533" target="_blank" >RIV/67985858:_____/19:00518533 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/19:43918404
Výsledek na webu
<a href="http://arxiv.org/pdf/1912.12111" target="_blank" >http://arxiv.org/pdf/1912.12111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.100.062802" target="_blank" >10.1103/PhysRevE.100.062802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Symmetry-breaking morphological transitions at chemically nanopatterned walls.
Popis výsledku v původním jazyce
We study the structure and morphological changes of fluids that are in contact with solid composites formed by alternating and microscopically wide stripes of two different materials. One type of the stripes interacts with the fluid via long-ranged Lennard-Jones-like potential and tends to be completely wet, while the other type iis purely repulsive and thus tends to be completely dry. We consider closed systems with a fixed number of particles that allows for stabilization of fluid configurations breaking the lateral symmetry of the wall potential. These include liquid morphologies corresponding to a sessile drop that is formed by a sequence of bridging transitions that connect neighboring wet regions adsorbed at the attractive stripes. We study the character of the transitions depending on the wall composition, stripes width, and system size. Using a (classical) nonlocal density functional theory (DFT), we show that the transitions between different liquid morphologies are typically weakly first-order but become rounded if the wavelength of the system is lower than a certain critical value Lc. We also argue that in the thermodynamic limit, i.e., for macroscopically large systems, the wall becomes wet via an infinite sequence of first-order bridging transitions that are, however, getting rapidly weaker and weaker and eventually become indistinguishable from a continuous process as the size of the bridging drop increases.nFinally, we construct the global phase diagram and study the density dependence of the contact angle of the bridging drops using DFT density profiles and a simple macroscopic theory.
Název v anglickém jazyce
Symmetry-breaking morphological transitions at chemically nanopatterned walls.
Popis výsledku anglicky
We study the structure and morphological changes of fluids that are in contact with solid composites formed by alternating and microscopically wide stripes of two different materials. One type of the stripes interacts with the fluid via long-ranged Lennard-Jones-like potential and tends to be completely wet, while the other type iis purely repulsive and thus tends to be completely dry. We consider closed systems with a fixed number of particles that allows for stabilization of fluid configurations breaking the lateral symmetry of the wall potential. These include liquid morphologies corresponding to a sessile drop that is formed by a sequence of bridging transitions that connect neighboring wet regions adsorbed at the attractive stripes. We study the character of the transitions depending on the wall composition, stripes width, and system size. Using a (classical) nonlocal density functional theory (DFT), we show that the transitions between different liquid morphologies are typically weakly first-order but become rounded if the wavelength of the system is lower than a certain critical value Lc. We also argue that in the thermodynamic limit, i.e., for macroscopically large systems, the wall becomes wet via an infinite sequence of first-order bridging transitions that are, however, getting rapidly weaker and weaker and eventually become indistinguishable from a continuous process as the size of the bridging drop increases.nFinally, we construct the global phase diagram and study the density dependence of the contact angle of the bridging drops using DFT density profiles and a simple macroscopic theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-25100S" target="_blank" >GA17-25100S: Geometricky a chemicky strukturované povrchy: od rovnováhy k dynamice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
100
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
062802
Kód UT WoS článku
000504639000016
EID výsledku v databázi Scopus
2-s2.0-85077359235