Molecular dynamics of aqueous salt solutions in clay nanopores under the thermodynamic conditions of hydraulic fracturing: Interplay between solution structure and molecular diffusion.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F20%3A00509982" target="_blank" >RIV/67985858:_____/20:00509982 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/20:43895335
Výsledek na webu
<a href="http://hdl.handle.net/11104/0304459" target="_blank" >http://hdl.handle.net/11104/0304459</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fluid.2019.112355" target="_blank" >10.1016/j.fluid.2019.112355</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular dynamics of aqueous salt solutions in clay nanopores under the thermodynamic conditions of hydraulic fracturing: Interplay between solution structure and molecular diffusion.
Popis výsledku v původním jazyce
Shale gas has become an important unconventional energy resource and is extracted by hydraulic fracturing of shale rocks. In shale rocks, kerogen and clays are present, the former providing storage for hydrocarbons, the latter preventing hydrocarbon transport. Clays are hydrophilic and have a layered structure. They can adsorb aqueous salt solutions in the interlayer space, and the interlayer ions contribute to a very high salinity of the flow-back water. We used montmorillonite (MMT) as a proxy of clays and study the interplay between the interlayer structure and the molecular diffusion of the aqueous salt solutions confined in the clay nanopores. We considered water with monovalent Na and divalent Ca ions in the MMT slit pores under a typical shale gas reservoir condition of a temperature of 365 K and a pressure of 275 bar. The confined systems were electrostatically balanced by Cl ions. We varied the amount of water to cover one-, two-, three-, and four-layer hydrate states. We quantified the solution structure in terms of the interlayer atomic density profiles, complemented by the charge density and water orientation profiles. We further evaluated the in-plane self-diffusivity of water and ions to provide insight into the diffusion behaviour of the concentrated water-NaCl and water-CaCl2 solutions in the interlayer galleries of the Na- and Ca-MMT pores. We found that the interlayer water structure displays an attraction of water hydrogens to the clay surfaces as a result of the strong H-bond interactions of water molecules with the surface oxygens and formation of a diffusive layer inside wide clay pores. The presence of divalent Ca ions has more pronounced effects on the interlayer water structures than the monovalent Na ions. Divalent Ca ions exhibit a preference for inner-sphere complexes over outer-sphere complexes due to the strong adsorption on the clay surfaces while Na ions show the opposite trend. nnn
Název v anglickém jazyce
Molecular dynamics of aqueous salt solutions in clay nanopores under the thermodynamic conditions of hydraulic fracturing: Interplay between solution structure and molecular diffusion.
Popis výsledku anglicky
Shale gas has become an important unconventional energy resource and is extracted by hydraulic fracturing of shale rocks. In shale rocks, kerogen and clays are present, the former providing storage for hydrocarbons, the latter preventing hydrocarbon transport. Clays are hydrophilic and have a layered structure. They can adsorb aqueous salt solutions in the interlayer space, and the interlayer ions contribute to a very high salinity of the flow-back water. We used montmorillonite (MMT) as a proxy of clays and study the interplay between the interlayer structure and the molecular diffusion of the aqueous salt solutions confined in the clay nanopores. We considered water with monovalent Na and divalent Ca ions in the MMT slit pores under a typical shale gas reservoir condition of a temperature of 365 K and a pressure of 275 bar. The confined systems were electrostatically balanced by Cl ions. We varied the amount of water to cover one-, two-, three-, and four-layer hydrate states. We quantified the solution structure in terms of the interlayer atomic density profiles, complemented by the charge density and water orientation profiles. We further evaluated the in-plane self-diffusivity of water and ions to provide insight into the diffusion behaviour of the concentrated water-NaCl and water-CaCl2 solutions in the interlayer galleries of the Na- and Ca-MMT pores. We found that the interlayer water structure displays an attraction of water hydrogens to the clay surfaces as a result of the strong H-bond interactions of water molecules with the surface oxygens and formation of a diffusive layer inside wide clay pores. The presence of divalent Ca ions has more pronounced effects on the interlayer water structures than the monovalent Na ions. Divalent Ca ions exhibit a preference for inner-sphere complexes over outer-sphere complexes due to the strong adsorption on the clay surfaces while Na ions show the opposite trend. nnn
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007411" target="_blank" >EF17_048/0007411: UniQSurf - Centrum biopovrchů a hybridních funkčních materiálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fluid Phase Equilibria
ISSN
0378-3812
e-ISSN
—
Svazek periodika
505
Číslo periodika v rámci svazku
FEB 1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
112355
Kód UT WoS článku
000501403500006
EID výsledku v databázi Scopus
2-s2.0-85073626197