Hygroscopic behavior of inorganic–organic aerosol systems including ammonium sulfate, dicarboxylic acids, and oligome.r
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F20%3A00523796" target="_blank" >RIV/67985858:_____/20:00523796 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/journal/atmospheric-environment/vol/229/suppl/C" target="_blank" >https://www.sciencedirect.com/journal/atmospheric-environment/vol/229/suppl/C</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.atmosenv.2020.117481" target="_blank" >10.1016/j.atmosenv.2020.117481</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hygroscopic behavior of inorganic–organic aerosol systems including ammonium sulfate, dicarboxylic acids, and oligome.r
Popis výsledku v původním jazyce
We provide indirect evidence for the presence of an organic solid alongside solid AS. Hypothetically, the observed disagreement could also be due to a preferential interaction between –COOH and –CH2OCH2- groups, which may prevent a fraction of the organic acid amount to interact with water. For fully deliquesced particles, good agreement between model predictions and measurements are found for the mixed PEG–organic acids–AS systems. Upon dehydration, when the mass fraction of PEG <20%, the signature of effloresced AS in solid–liquid equilibrium with the remaining solution was observed. However, with higher organic volume fraction, the particles release water gradually without a noticeable efflorescence of AS down to 20% RH. For quinary PEG–organic acids–AS systems, the AIOMFAC-based equilibrium model predicts that liquid–liquid phase separation (LLPS) occurs with a clear distinction between a predominantly electrolyte-rich phase alfa (composed mainly of ammonium and sulfate ions, organic acids and water) and an organic-rich phase beta (composed mainly of PEG). The onset of LLPS is predicted at RH levels of 83–89% depending on the mixed particle’s composition. We also show that a residence time of ~10 s in the humidified section of the HTDMA instrument is sufficient for establishing gas–particle equilibrium of the 100 nm sized organic–inorganic particles studied in this work, this may differ in other cases when highly viscous particles are involved. The measurements offer valuable data for future work on the development and validation of organic solid–liquid equilibrium in thermodynamic models.
Název v anglickém jazyce
Hygroscopic behavior of inorganic–organic aerosol systems including ammonium sulfate, dicarboxylic acids, and oligome.r
Popis výsledku anglicky
We provide indirect evidence for the presence of an organic solid alongside solid AS. Hypothetically, the observed disagreement could also be due to a preferential interaction between –COOH and –CH2OCH2- groups, which may prevent a fraction of the organic acid amount to interact with water. For fully deliquesced particles, good agreement between model predictions and measurements are found for the mixed PEG–organic acids–AS systems. Upon dehydration, when the mass fraction of PEG <20%, the signature of effloresced AS in solid–liquid equilibrium with the remaining solution was observed. However, with higher organic volume fraction, the particles release water gradually without a noticeable efflorescence of AS down to 20% RH. For quinary PEG–organic acids–AS systems, the AIOMFAC-based equilibrium model predicts that liquid–liquid phase separation (LLPS) occurs with a clear distinction between a predominantly electrolyte-rich phase alfa (composed mainly of ammonium and sulfate ions, organic acids and water) and an organic-rich phase beta (composed mainly of PEG). The onset of LLPS is predicted at RH levels of 83–89% depending on the mixed particle’s composition. We also show that a residence time of ~10 s in the humidified section of the HTDMA instrument is sufficient for establishing gas–particle equilibrium of the 100 nm sized organic–inorganic particles studied in this work, this may differ in other cases when highly viscous particles are involved. The measurements offer valuable data for future work on the development and validation of organic solid–liquid equilibrium in thermodynamic models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Atmospheric Environment
ISSN
1352-2310
e-ISSN
—
Svazek periodika
229
Číslo periodika v rámci svazku
15 May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
117481
Kód UT WoS článku
000530031600020
EID výsledku v databázi Scopus
2-s2.0-85083048409