Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Height of a liquid drop on a wetting stripe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F20%3A00536542" target="_blank" >RIV/67985858:_____/20:00536542 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22340/20:43921602

  • Výsledek na webu

    <a href="http://hdl.handle.net/11104/0314311" target="_blank" >http://hdl.handle.net/11104/0314311</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevE.102.052802" target="_blank" >10.1103/PhysRevE.102.052802</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Height of a liquid drop on a wetting stripe

  • Popis výsledku v původním jazyce

    Adsorption of liquid on a planar wall decorated by a hydrophilic stripe of width L is considered. Under the condition that the wall is only partially wet (or dry) while the stripe tends to be wet completely, a liquid drop is formed above the stripe. The maximum height l(m)(delta mu) of the drop depends on the stripe width L and the chemical potential departure from saturation delta mu where it adopts the value l(0) = l(m)(0). Assuming a long-range potential of van der Waals type exerted by the stripe, the interfacial Hamiltonian model is used to show that l(0) is approached linearly with delta mu with a slope which scales as L-2 over the region satisfying L less than or similar to xi(parallel to), where xi(parallel to) is the parallel correlation function pertinent to the stripe. This suggests that near the saturation there exists a universal curve l(m)(delta mu) to which the adsorption isotherms corresponding to different values of L all collapse when appropriately rescaled. Although the series expansion based on the interfacial Hamiltonian model can be formed by considering higher order terms, a more appropriate approximation in the form of a rational function based on scaling arguments is proposed. The approximation is based on exact asymptotic results, namely, that l(m) similar to delta mu(-1/3) for L -> infinity and that ?m obeys the correct delta mu -> 0 behavior in line with the results of the interfacial Hamiltonian model. All the predictions are verified by the comparison with a microscopic density functional theory (DFT) and, in particular, the rational function approximation-even in its simplest form-is shown to be in a very reasonable agreement with DFT for a broad range of both S mu and L.

  • Název v anglickém jazyce

    Height of a liquid drop on a wetting stripe

  • Popis výsledku anglicky

    Adsorption of liquid on a planar wall decorated by a hydrophilic stripe of width L is considered. Under the condition that the wall is only partially wet (or dry) while the stripe tends to be wet completely, a liquid drop is formed above the stripe. The maximum height l(m)(delta mu) of the drop depends on the stripe width L and the chemical potential departure from saturation delta mu where it adopts the value l(0) = l(m)(0). Assuming a long-range potential of van der Waals type exerted by the stripe, the interfacial Hamiltonian model is used to show that l(0) is approached linearly with delta mu with a slope which scales as L-2 over the region satisfying L less than or similar to xi(parallel to), where xi(parallel to) is the parallel correlation function pertinent to the stripe. This suggests that near the saturation there exists a universal curve l(m)(delta mu) to which the adsorption isotherms corresponding to different values of L all collapse when appropriately rescaled. Although the series expansion based on the interfacial Hamiltonian model can be formed by considering higher order terms, a more appropriate approximation in the form of a rational function based on scaling arguments is proposed. The approximation is based on exact asymptotic results, namely, that l(m) similar to delta mu(-1/3) for L -> infinity and that ?m obeys the correct delta mu -> 0 behavior in line with the results of the interfacial Hamiltonian model. All the predictions are verified by the comparison with a microscopic density functional theory (DFT) and, in particular, the rational function approximation-even in its simplest form-is shown to be in a very reasonable agreement with DFT for a broad range of both S mu and L.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-14547S" target="_blank" >GA20-14547S: Povrchové a kritické jevy v nano-strukturovaném prostředí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review E

  • ISSN

    2470-0045

  • e-ISSN

  • Svazek periodika

    102

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    052802

  • Kód UT WoS článku

    000594838300013

  • EID výsledku v databázi Scopus

    2-s2.0-85097583640