Generalized energy-conserving dissipative particle dynamics revisited: Insight from the thermodynamics of the mesoparticle leading to an alternative heat flow model.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F21%3A00543234" target="_blank" >RIV/67985858:_____/21:00543234 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/21:43896258
Výsledek na webu
<a href="http://hdl.handle.net/11104/0320700" target="_blank" >http://hdl.handle.net/11104/0320700</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.103.062128" target="_blank" >10.1103/PhysRevE.103.062128</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized energy-conserving dissipative particle dynamics revisited: Insight from the thermodynamics of the mesoparticle leading to an alternative heat flow model.
Popis výsledku v původním jazyce
Recently we introduced the generalized energy-conserving dissipative particle dynamics method (GenDPDE) [J. Bonet Avalos, M. Lísal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, Phys. Chem. Chem. Phys. 21, 24891 (2019)], which has been formulated for an emerging class of density- and temperature-dependent coarse-grain models. In the original work, GenDPDE was formulated to ensure a fundamental link is maintained with the underlying physical system at the higher resolution scale. In this paper, we revisit the formulation of thenGenDPDE method, and rederive the particle thermodynamics to ensure consistency at the opposing scale extreme, i.e., between the local thermodynamics in the mesoscopic systems and the corresponding macroscopic properties. We demonstrate this consistency by introducing unambiguous, physically meaningful definitions of the heat and work, which lead to the formulation of an alternative heat flow model that is analogous to Fourier’s law of heat conduction. We present further analysis of the internal, unresolved degrees-of-freedom of the mesoparticles by considering the thermodynamics of an individual mesoparticle within the GenDPDE framework. Several key outcomes of the analysis include: (i) demonstration that the choice of the independent variables alters the particle thermodynamic description (ii) demonstration that the mesoscopic thermodynamic transformations introduce additional terms of the order of the size of the local fluctuations, which prevent an unambiguous definition of both the heat and work, (iii) an emphasis on the importance of the choice of the proper estimators of the thermodynamic properties that are embedded in the chosen thermodynamic description, and (iv) a clearly defined path for determining any thermodynamic quantity dressed by the fluctuations. The further insight provided by this deeper analysis is useful for both readers interested in the GenDPDE theoretical framework, as well as readers interested in the practical ramifications of the analysis, namely, the alternative heat flow model.
Název v anglickém jazyce
Generalized energy-conserving dissipative particle dynamics revisited: Insight from the thermodynamics of the mesoparticle leading to an alternative heat flow model.
Popis výsledku anglicky
Recently we introduced the generalized energy-conserving dissipative particle dynamics method (GenDPDE) [J. Bonet Avalos, M. Lísal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, Phys. Chem. Chem. Phys. 21, 24891 (2019)], which has been formulated for an emerging class of density- and temperature-dependent coarse-grain models. In the original work, GenDPDE was formulated to ensure a fundamental link is maintained with the underlying physical system at the higher resolution scale. In this paper, we revisit the formulation of thenGenDPDE method, and rederive the particle thermodynamics to ensure consistency at the opposing scale extreme, i.e., between the local thermodynamics in the mesoscopic systems and the corresponding macroscopic properties. We demonstrate this consistency by introducing unambiguous, physically meaningful definitions of the heat and work, which lead to the formulation of an alternative heat flow model that is analogous to Fourier’s law of heat conduction. We present further analysis of the internal, unresolved degrees-of-freedom of the mesoparticles by considering the thermodynamics of an individual mesoparticle within the GenDPDE framework. Several key outcomes of the analysis include: (i) demonstration that the choice of the independent variables alters the particle thermodynamic description (ii) demonstration that the mesoscopic thermodynamic transformations introduce additional terms of the order of the size of the local fluctuations, which prevent an unambiguous definition of both the heat and work, (iii) an emphasis on the importance of the choice of the proper estimators of the thermodynamic properties that are embedded in the chosen thermodynamic description, and (iv) a clearly defined path for determining any thermodynamic quantity dressed by the fluctuations. The further insight provided by this deeper analysis is useful for both readers interested in the GenDPDE theoretical framework, as well as readers interested in the practical ramifications of the analysis, namely, the alternative heat flow model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
103
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
062128
Kód UT WoS článku
000662985600001
EID výsledku v databázi Scopus
2-s2.0-85108242882