Tool for optimization of energy consumption of membrane-based carbon capture
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F22%3A00561087" target="_blank" >RIV/67985858:_____/22:00561087 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/22:PU145292
Výsledek na webu
<a href="https://hdl.handle.net/11104/0333936" target="_blank" >https://hdl.handle.net/11104/0333936</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jenvman.2022.115913" target="_blank" >10.1016/j.jenvman.2022.115913</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tool for optimization of energy consumption of membrane-based carbon capture
Popis výsledku v původním jazyce
The reduction of CO2 emissions is a very challenging issue. The capture of CO2 from combustion processes is associated with high energy consumption and decreases the efficiency of power-producing facilities. This can affect the economy and in specific cases, such as waste-to-energy plants, also their classification according to legislation. To allow the minimization of energy consumption, an optimization tool for membrane-based postcombustion capture was developed. The approach allows finding optimal membrane properties, membrane areas, and pressures for individual separation stages from the point of view of energy consumption. The core of the approach is represented by a mathematical model of the separation system that is based on a network flow problem. The model utilizes external simulation modules for non-linear problems to enable finding globally optimal results. These external modules approximate non-linear dependencies with any desired precision and allow using different mathematical descriptions of individual membrane stages without making changes to the model. Moreover, it allows easy substitution of the external module by experimental data and the model can be easily modified for specific purposes such as decision making, designing the separation process, as well as for regulation of process parameters in the case of dynamic operation. The ability of the model to optimize the process was verified on a case study and the results show that the optimization can significantly reduce the energy consumption of the process. For separation of 90% of CO2 at the purity of 95% from initial flue gas with 13% CO2 with state-of-the-art membranes based on the Robeson upper bound and three-stage process, the minimum power consumption was 1.74 GJ/tCO2 including final CO2 compression.
Název v anglickém jazyce
Tool for optimization of energy consumption of membrane-based carbon capture
Popis výsledku anglicky
The reduction of CO2 emissions is a very challenging issue. The capture of CO2 from combustion processes is associated with high energy consumption and decreases the efficiency of power-producing facilities. This can affect the economy and in specific cases, such as waste-to-energy plants, also their classification according to legislation. To allow the minimization of energy consumption, an optimization tool for membrane-based postcombustion capture was developed. The approach allows finding optimal membrane properties, membrane areas, and pressures for individual separation stages from the point of view of energy consumption. The core of the approach is represented by a mathematical model of the separation system that is based on a network flow problem. The model utilizes external simulation modules for non-linear problems to enable finding globally optimal results. These external modules approximate non-linear dependencies with any desired precision and allow using different mathematical descriptions of individual membrane stages without making changes to the model. Moreover, it allows easy substitution of the external module by experimental data and the model can be easily modified for specific purposes such as decision making, designing the separation process, as well as for regulation of process parameters in the case of dynamic operation. The ability of the model to optimize the process was verified on a case study and the results show that the optimization can significantly reduce the energy consumption of the process. For separation of 90% of CO2 at the purity of 95% from initial flue gas with 13% CO2 with state-of-the-art membranes based on the Robeson upper bound and three-stage process, the minimum power consumption was 1.74 GJ/tCO2 including final CO2 compression.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Environmental Management
ISSN
0301-4797
e-ISSN
1095-8630
Svazek periodika
320
Číslo periodika v rámci svazku
OCT 15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
115913
Kód UT WoS článku
000848489200005
EID výsledku v databázi Scopus
2-s2.0-85135921457