Mathematical Modeling of Heat and Mass Transfer in a Rotary Kiln
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F22%3A00567909" target="_blank" >RIV/67985858:_____/22:00567909 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/22:43897539
Výsledek na webu
<a href="https://www.icct.cz/en/Amca-ICCT/media/content/2022/proceedings/ICCT2022-Proceedings.pdf" target="_blank" >https://www.icct.cz/en/Amca-ICCT/media/content/2022/proceedings/ICCT2022-Proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mathematical Modeling of Heat and Mass Transfer in a Rotary Kiln
Popis výsledku v původním jazyce
The main objective of this research was to compare the results of the proposed 1D transport model with numerical simulations of mass transport in a direct-heat rotary kiln at laboratory scale. Another objective was to investigate the effect of the number of flights on the formation of an active particle surface in the airborne phase, which enables efficient heat transport. The studied rotary kiln is a low-angle cylinder with a length of 0.5 meter and a diameter of 0.108 meter with regularly arranged flights on the inside. The heat is transported into the rotary kiln by hot air at the inlet. The load in the rotary kiln consists of spherical particles with 1 millimeter diameter. The rotary kiln rotation speed is 21.5 rpm. For each simulation, 20 rotations were performed. The Discrete Element Method implemented in an open-source code LIGGGHTS was used for simulations.Efficient heat transfer is made possible primarily by the large number of particles in the airborne phase, which are heated by the warm air blowing in. To begin with, the number of flights and their geometry were found to be a key parameter controlling the amount of particles in the gaseous regime. It was also found that an area in the right part of the base of the cylinder is formed which is not reached by particles from the flights. This phenomenon is due to the dynamics of particle transport, as the particles are not maintained in the active phase and move rapidly towards the load due to gravity. In conclusion, the effect of this zone is negative, as hot air flows through it without resistance, preventing the system from heating effectively.
Název v anglickém jazyce
Mathematical Modeling of Heat and Mass Transfer in a Rotary Kiln
Popis výsledku anglicky
The main objective of this research was to compare the results of the proposed 1D transport model with numerical simulations of mass transport in a direct-heat rotary kiln at laboratory scale. Another objective was to investigate the effect of the number of flights on the formation of an active particle surface in the airborne phase, which enables efficient heat transport. The studied rotary kiln is a low-angle cylinder with a length of 0.5 meter and a diameter of 0.108 meter with regularly arranged flights on the inside. The heat is transported into the rotary kiln by hot air at the inlet. The load in the rotary kiln consists of spherical particles with 1 millimeter diameter. The rotary kiln rotation speed is 21.5 rpm. For each simulation, 20 rotations were performed. The Discrete Element Method implemented in an open-source code LIGGGHTS was used for simulations.Efficient heat transfer is made possible primarily by the large number of particles in the airborne phase, which are heated by the warm air blowing in. To begin with, the number of flights and their geometry were found to be a key parameter controlling the amount of particles in the gaseous regime. It was also found that an area in the right part of the base of the cylinder is formed which is not reached by particles from the flights. This phenomenon is due to the dynamics of particle transport, as the particles are not maintained in the active phase and move rapidly towards the load due to gravity. In conclusion, the effect of this zone is negative, as hot air flows through it without resistance, preventing the system from heating effectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF18_053%2F0017815" target="_blank" >EF18_053/0017815: U21-Kvalitní lidské zdroje pro posílení mezinárodního prostředí II</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings
ISBN
978-80-88307-11-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
241-246
Název nakladatele
Czech Society of Industrial Chemistry
Místo vydání
Prague
Místo konání akce
Mikulov
Datum konání akce
25. 4. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—