Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00565270" target="_blank" >RIV/67985858:_____/23:00565270 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44555601:13440/23:43897334

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0336840" target="_blank" >https://hdl.handle.net/11104/0336840</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.energyfuels.2c03193" target="_blank" >10.1021/acs.energyfuels.2c03193</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations

  • Popis výsledku v původním jazyce

    Organic-shale formations are unconventional gas reservoirs with broad pore size distributions. Shale consists of two distinct components: organic matter and clay minerals. The size of pores in the organic matter is mostly concentrated at less than six nanometers, and these micropores and small mesopores provide the majority of adsorption surface area and gas storage volume. In these nanometer-sized pores, the geofluid behavior becomes significantly different from the bulk behavior due to the strong solid−fluid interactions and other confinement effects. Understanding the properties of fluids such as methane, ethane, propane, and carbon dioxide in narrow shale pores is critical for identifying ways to deploy shale gas technology with reduced environmental impact. Specifically, methane is a proxy of the shale gas, and ethane and propane are minor shale-gas components. Further, carbonndioxide is used for enhanced shale-gas recovery. We employ molecular-level simulations to explore adsorption, diffusion, and transport of methane, ethane, propane, and carbon dioxide in realistic models of organic-shale materials at a representative shale reservoir temperature and pressures. We first use Hybrid Reverse Monte Carlo with experimental pair distribution functions to build dual-porosity kerogen models corresponding to an immature marine kerogen from the Eagle Ford Play and a mature marine kerogen from the clay-rich Marcellus Play. We then employ Grand Canonical Monte Carlo simulations to study the fluid adsorption in the porous kerogen structures. We complete the adsorption studies by simulating the self-diffusivity, collective diffusivity, and transport diffusivity of the adsorbed fluid molecules in the shale kerogens using equilibrium and nonequilibrium molecular dynamics.

  • Název v anglickém jazyce

    Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations

  • Popis výsledku anglicky

    Organic-shale formations are unconventional gas reservoirs with broad pore size distributions. Shale consists of two distinct components: organic matter and clay minerals. The size of pores in the organic matter is mostly concentrated at less than six nanometers, and these micropores and small mesopores provide the majority of adsorption surface area and gas storage volume. In these nanometer-sized pores, the geofluid behavior becomes significantly different from the bulk behavior due to the strong solid−fluid interactions and other confinement effects. Understanding the properties of fluids such as methane, ethane, propane, and carbon dioxide in narrow shale pores is critical for identifying ways to deploy shale gas technology with reduced environmental impact. Specifically, methane is a proxy of the shale gas, and ethane and propane are minor shale-gas components. Further, carbonndioxide is used for enhanced shale-gas recovery. We employ molecular-level simulations to explore adsorption, diffusion, and transport of methane, ethane, propane, and carbon dioxide in realistic models of organic-shale materials at a representative shale reservoir temperature and pressures. We first use Hybrid Reverse Monte Carlo with experimental pair distribution functions to build dual-porosity kerogen models corresponding to an immature marine kerogen from the Eagle Ford Play and a mature marine kerogen from the clay-rich Marcellus Play. We then employ Grand Canonical Monte Carlo simulations to study the fluid adsorption in the porous kerogen structures. We complete the adsorption studies by simulating the self-diffusivity, collective diffusivity, and transport diffusivity of the adsorbed fluid molecules in the shale kerogens using equilibrium and nonequilibrium molecular dynamics.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy and Fuels

  • ISSN

    0887-0624

  • e-ISSN

    1520-5029

  • Svazek periodika

    37

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    492-508

  • Kód UT WoS článku

    000898893000001

  • EID výsledku v databázi Scopus

    2-s2.0-85144327939