Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00565270" target="_blank" >RIV/67985858:_____/23:00565270 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/23:43897334
Výsledek na webu
<a href="https://hdl.handle.net/11104/0336840" target="_blank" >https://hdl.handle.net/11104/0336840</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.energyfuels.2c03193" target="_blank" >10.1021/acs.energyfuels.2c03193</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations
Popis výsledku v původním jazyce
Organic-shale formations are unconventional gas reservoirs with broad pore size distributions. Shale consists of two distinct components: organic matter and clay minerals. The size of pores in the organic matter is mostly concentrated at less than six nanometers, and these micropores and small mesopores provide the majority of adsorption surface area and gas storage volume. In these nanometer-sized pores, the geofluid behavior becomes significantly different from the bulk behavior due to the strong solid−fluid interactions and other confinement effects. Understanding the properties of fluids such as methane, ethane, propane, and carbon dioxide in narrow shale pores is critical for identifying ways to deploy shale gas technology with reduced environmental impact. Specifically, methane is a proxy of the shale gas, and ethane and propane are minor shale-gas components. Further, carbonndioxide is used for enhanced shale-gas recovery. We employ molecular-level simulations to explore adsorption, diffusion, and transport of methane, ethane, propane, and carbon dioxide in realistic models of organic-shale materials at a representative shale reservoir temperature and pressures. We first use Hybrid Reverse Monte Carlo with experimental pair distribution functions to build dual-porosity kerogen models corresponding to an immature marine kerogen from the Eagle Ford Play and a mature marine kerogen from the clay-rich Marcellus Play. We then employ Grand Canonical Monte Carlo simulations to study the fluid adsorption in the porous kerogen structures. We complete the adsorption studies by simulating the self-diffusivity, collective diffusivity, and transport diffusivity of the adsorbed fluid molecules in the shale kerogens using equilibrium and nonequilibrium molecular dynamics.
Název v anglickém jazyce
Adsorption, Diffusion, and Transport of C1 to C3 Alkanes and Carbon Dioxide in Dual-Porosity Kerogens: Insights from Molecular Simulations
Popis výsledku anglicky
Organic-shale formations are unconventional gas reservoirs with broad pore size distributions. Shale consists of two distinct components: organic matter and clay minerals. The size of pores in the organic matter is mostly concentrated at less than six nanometers, and these micropores and small mesopores provide the majority of adsorption surface area and gas storage volume. In these nanometer-sized pores, the geofluid behavior becomes significantly different from the bulk behavior due to the strong solid−fluid interactions and other confinement effects. Understanding the properties of fluids such as methane, ethane, propane, and carbon dioxide in narrow shale pores is critical for identifying ways to deploy shale gas technology with reduced environmental impact. Specifically, methane is a proxy of the shale gas, and ethane and propane are minor shale-gas components. Further, carbonndioxide is used for enhanced shale-gas recovery. We employ molecular-level simulations to explore adsorption, diffusion, and transport of methane, ethane, propane, and carbon dioxide in realistic models of organic-shale materials at a representative shale reservoir temperature and pressures. We first use Hybrid Reverse Monte Carlo with experimental pair distribution functions to build dual-porosity kerogen models corresponding to an immature marine kerogen from the Eagle Ford Play and a mature marine kerogen from the clay-rich Marcellus Play. We then employ Grand Canonical Monte Carlo simulations to study the fluid adsorption in the porous kerogen structures. We complete the adsorption studies by simulating the self-diffusivity, collective diffusivity, and transport diffusivity of the adsorbed fluid molecules in the shale kerogens using equilibrium and nonequilibrium molecular dynamics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy and Fuels
ISSN
0887-0624
e-ISSN
1520-5029
Svazek periodika
37
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
492-508
Kód UT WoS článku
000898893000001
EID výsledku v databázi Scopus
2-s2.0-85144327939