Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Anthropogenic and biogenic tracers in fine aerosol based on seasonal distributions of dicarboxylic acids, sugars and related compounds at a rural background site in Central Europe.

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00567799" target="_blank" >RIV/67985858:_____/23:00567799 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1352231023000456?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1352231023000456?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.atmosenv.2023.119619" target="_blank" >10.1016/j.atmosenv.2023.119619</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Anthropogenic and biogenic tracers in fine aerosol based on seasonal distributions of dicarboxylic acids, sugars and related compounds at a rural background site in Central Europe.

  • Popis výsledku v původním jazyce

    Water-soluble organic compounds in aerosols are considered as relevant indicators of atmospheric processes. Fine particulate matter (PM1) samples were collected at National Atmospheric Observatory Košetice (NAOK), a rural background site representative of Central Europe, from September 27, 2013 to August 9, 2014. The samples (n = 146) were analyzed for water-soluble dicarboxylic acids (hereafter referred to as diacids) and related compounds to identify their seasonal variations and origins. Based on the Positive Matrix Factorization (PMF) analysis, we identified 5 factors – 2 anthropogenic, 2 biogenic and 1 background factors. In winter, anthropogenic contributions dominated in total organic matter (OM). Typical tracers for the main winter anthropogenic factor 1, connected with biomass burning (BB), were anhydrosugars together with maleic (M), methylmaleic (mM) and methylsuccinic (iC5) acids. This BB factor accounted for 64.1 ± 14.3% of OM in winter (annual avg. 36.7 ± 27.4%). A secondary anthropogenic factor 2 was characterized by phthalic (Ph), terephthalic (tPh) and ketomalonic (kC3) acids, which we assigned to secondary combustion products. The contribution of anthropogenic factor 2 was at a similar level throughout the year (12.5 ± 10.1% in OM). Mainly in winter, although also in spring and autumn, was the characteristic formation of diacids by secondary aqueous phase reactions, typically accompanied by lower temperatures, global radiation and ozone (O3) concentrations, yet higher relative humidity (RH) and aerosol liquid water content (ALWC). In summer, contributions of biogenic origin dominated. Secondary organic aerosols (SOA) of biogenic origin were typically represented by malonic (C3), methylmalonic (iC4), 3-oxopropanoic (ωC3), 4-ketopimelic (kC7), 7- oxoheptanoic (ωC7), pimelic (C7) and suberic (C8) acids. The factor, named as Biogenic 1, was dominant in summer with a contribution of 40.3 ± 19.6% in OM, while in other seasons, its contribution was below 10%. This factor was mainly characterized by a relative summer increase in the concentrations of kC7 and ωC7 acids. The second biogenic factor 2, also significant in summer (36.8 ± 20.5%) and dominant in spring (34.9 ± 19.9%), was represented by primary sugars (fructose, galactose and sucrose), normal chain diacids (oxalic (C2) to azelaic (C9)) and their oxidative precursors (ωC3, 4-oxobutanoic (ωC4) and 5-oxopentanoic (ωC5) acids). The photochemical formation of SOA in the gas phase was characteristic mostly for the summer season, accompanied by higher temperatures, global radiation and O3 concentrations, and lower RH. Additionally, background factor was resolved, which represents compounds with no distinctive seasonal variation and can therefore be of both anthropogenic and biogenic origin and contained mainly less oxidized compounds (methylglyoxal (MeGly), glyoxal (Gly), glyoxylic acid (ωC2) and pyruvic acid (Pyr)).

  • Název v anglickém jazyce

    Anthropogenic and biogenic tracers in fine aerosol based on seasonal distributions of dicarboxylic acids, sugars and related compounds at a rural background site in Central Europe.

  • Popis výsledku anglicky

    Water-soluble organic compounds in aerosols are considered as relevant indicators of atmospheric processes. Fine particulate matter (PM1) samples were collected at National Atmospheric Observatory Košetice (NAOK), a rural background site representative of Central Europe, from September 27, 2013 to August 9, 2014. The samples (n = 146) were analyzed for water-soluble dicarboxylic acids (hereafter referred to as diacids) and related compounds to identify their seasonal variations and origins. Based on the Positive Matrix Factorization (PMF) analysis, we identified 5 factors – 2 anthropogenic, 2 biogenic and 1 background factors. In winter, anthropogenic contributions dominated in total organic matter (OM). Typical tracers for the main winter anthropogenic factor 1, connected with biomass burning (BB), were anhydrosugars together with maleic (M), methylmaleic (mM) and methylsuccinic (iC5) acids. This BB factor accounted for 64.1 ± 14.3% of OM in winter (annual avg. 36.7 ± 27.4%). A secondary anthropogenic factor 2 was characterized by phthalic (Ph), terephthalic (tPh) and ketomalonic (kC3) acids, which we assigned to secondary combustion products. The contribution of anthropogenic factor 2 was at a similar level throughout the year (12.5 ± 10.1% in OM). Mainly in winter, although also in spring and autumn, was the characteristic formation of diacids by secondary aqueous phase reactions, typically accompanied by lower temperatures, global radiation and ozone (O3) concentrations, yet higher relative humidity (RH) and aerosol liquid water content (ALWC). In summer, contributions of biogenic origin dominated. Secondary organic aerosols (SOA) of biogenic origin were typically represented by malonic (C3), methylmalonic (iC4), 3-oxopropanoic (ωC3), 4-ketopimelic (kC7), 7- oxoheptanoic (ωC7), pimelic (C7) and suberic (C8) acids. The factor, named as Biogenic 1, was dominant in summer with a contribution of 40.3 ± 19.6% in OM, while in other seasons, its contribution was below 10%. This factor was mainly characterized by a relative summer increase in the concentrations of kC7 and ωC7 acids. The second biogenic factor 2, also significant in summer (36.8 ± 20.5%) and dominant in spring (34.9 ± 19.9%), was represented by primary sugars (fructose, galactose and sucrose), normal chain diacids (oxalic (C2) to azelaic (C9)) and their oxidative precursors (ωC3, 4-oxobutanoic (ωC4) and 5-oxopentanoic (ωC5) acids). The photochemical formation of SOA in the gas phase was characteristic mostly for the summer season, accompanied by higher temperatures, global radiation and O3 concentrations, and lower RH. Additionally, background factor was resolved, which represents compounds with no distinctive seasonal variation and can therefore be of both anthropogenic and biogenic origin and contained mainly less oxidized compounds (methylglyoxal (MeGly), glyoxal (Gly), glyoxylic acid (ωC2) and pyruvic acid (Pyr)).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Atmospheric Environment

  • ISSN

    1352-2310

  • e-ISSN

    1873-2844

  • Svazek periodika

    299

  • Číslo periodika v rámci svazku

    15 April

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    119619

  • Kód UT WoS článku

    000942570600001

  • EID výsledku v databázi Scopus

    2-s2.0-85147880215