The electrodiffusional theory for the wall shear stress measurement by two-strip probe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00572099" target="_blank" >RIV/67985858:_____/23:00572099 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/23:43897677
Výsledek na webu
<a href="https://hdl.handle.net/11104/0342928" target="_blank" >https://hdl.handle.net/11104/0342928</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijheatmasstransfer.2023.124287" target="_blank" >10.1016/j.ijheatmasstransfer.2023.124287</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The electrodiffusional theory for the wall shear stress measurement by two-strip probe
Popis výsledku v původním jazyce
This article deals with the derivation of the fundamental theory describing the mass transport on the active surface of a two-strip mass transfer probe for an arbitrary direction of fluid flow. The existence of such a general theory is a critical point for the application of the electrodiffusion method using a twostrip probe. Considering the different possible sizes of the probe segments, the analytical formulas for the average mass transfer coefficients are derived and presented in dimensionless forms for both segments. The correctness of the derived analytical expressions is verified by numerical solution of the convection diffusion transport equation. A methodology for possible experimental data treatment is also proposed. It is based on the evaluation of two current signals collected from the segments of a two-strip probe. From the derived equations, it is possible to determine the magnitude and direction of the wall shear rate vector for both frontal and reverse flow regimes. From the analysis of the current ratio predictions for different probe geometries, an optimal probe configuration is found with respect to the sensitivity of the flow direction measurement.
Název v anglickém jazyce
The electrodiffusional theory for the wall shear stress measurement by two-strip probe
Popis výsledku anglicky
This article deals with the derivation of the fundamental theory describing the mass transport on the active surface of a two-strip mass transfer probe for an arbitrary direction of fluid flow. The existence of such a general theory is a critical point for the application of the electrodiffusion method using a twostrip probe. Considering the different possible sizes of the probe segments, the analytical formulas for the average mass transfer coefficients are derived and presented in dimensionless forms for both segments. The correctness of the derived analytical expressions is verified by numerical solution of the convection diffusion transport equation. A methodology for possible experimental data treatment is also proposed. It is based on the evaluation of two current signals collected from the segments of a two-strip probe. From the derived equations, it is possible to determine the magnitude and direction of the wall shear rate vector for both frontal and reverse flow regimes. From the analysis of the current ratio predictions for different probe geometries, an optimal probe configuration is found with respect to the sensitivity of the flow direction measurement.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Heat and Mass Transfer
ISSN
0017-9310
e-ISSN
1879-2189
Svazek periodika
212
Číslo periodika v rámci svazku
SEP 15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
124287
Kód UT WoS článku
001009321500001
EID výsledku v databázi Scopus
2-s2.0-85162230307