Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F24%3A00580963" target="_blank" >RIV/67985858:_____/24:00580963 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27360/24:10253255 RIV/61989100:27640/24:10253255 RIV/61989100:27710/24:10253255 RIV/61989100:27730/24:10253255

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0349653" target="_blank" >https://hdl.handle.net/11104/0349653</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jphotochem.2023.115260" target="_blank" >10.1016/j.jphotochem.2023.115260</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiation

  • Popis výsledku v původním jazyce

    Graphitic carbon nitride (g-C3N4) and Ti3C2 nanocomposites were formed in aqueous dispersions under ultra-sound, by the calcination of the mixtures of solid dicyandiamide (DCDA) and Ti3C2, and of dissolved DCDA and Ti3C2 in an aqueous phase. A heterojunction between g-C3N4 and Ti3C2, based on mutual chemical bonds, was created in all the synthetized materials as observed by X-ray photoelectron spectroscopy and also indicated by the decrease of band bap energies from 2.71 eV to 2.59 eV. The transfer of photoexcited electrons from g-C3N4 to Ti3C2 was documented by photoluminescence spectroscopy.Molecular modelling confirmed an observation provided by scanning electron microscopy that Ti3C2 was not equally dispersed in g-C3N4 but formed separated agglomerates.It was calculated that the interactions of g-C3N4/g-C3N4 and Ti3C2/Ti3C2 layers were stronger than those of g-C3N4/Ti3C2, and the interactions of Ti3C2 functionalized with oxygen were stronger than those of Ti3C2 functionalized with fluorine. The g-C3N4/Ti3C2 nanocomposites were further tested for photocatalytic oxidation reactions, such as the degradation of phenol and ofloxacin, and for reduction reactions, such as the evolution of hydrogen. Ofloxacin was degraded more efficiently (max. 79.4 %) than phenol (max. 20.1 %) during 120 min.The highest hydrogen yield was 76.9 mu mol after 4 h of irradiation. All the photocatalytic experiments were performed under visible irradiation and confirmed the electron transfer from g-C3N4 to Ti3C2 enhancing the photocatalytic activity of g-C3N4.

  • Název v anglickém jazyce

    Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiation

  • Popis výsledku anglicky

    Graphitic carbon nitride (g-C3N4) and Ti3C2 nanocomposites were formed in aqueous dispersions under ultra-sound, by the calcination of the mixtures of solid dicyandiamide (DCDA) and Ti3C2, and of dissolved DCDA and Ti3C2 in an aqueous phase. A heterojunction between g-C3N4 and Ti3C2, based on mutual chemical bonds, was created in all the synthetized materials as observed by X-ray photoelectron spectroscopy and also indicated by the decrease of band bap energies from 2.71 eV to 2.59 eV. The transfer of photoexcited electrons from g-C3N4 to Ti3C2 was documented by photoluminescence spectroscopy.Molecular modelling confirmed an observation provided by scanning electron microscopy that Ti3C2 was not equally dispersed in g-C3N4 but formed separated agglomerates.It was calculated that the interactions of g-C3N4/g-C3N4 and Ti3C2/Ti3C2 layers were stronger than those of g-C3N4/Ti3C2, and the interactions of Ti3C2 functionalized with oxygen were stronger than those of Ti3C2 functionalized with fluorine. The g-C3N4/Ti3C2 nanocomposites were further tested for photocatalytic oxidation reactions, such as the degradation of phenol and ofloxacin, and for reduction reactions, such as the evolution of hydrogen. Ofloxacin was degraded more efficiently (max. 79.4 %) than phenol (max. 20.1 %) during 120 min.The highest hydrogen yield was 76.9 mu mol after 4 h of irradiation. All the photocatalytic experiments were performed under visible irradiation and confirmed the electron transfer from g-C3N4 to Ti3C2 enhancing the photocatalytic activity of g-C3N4.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Photochemistry and Photobiology A-Chemistry

  • ISSN

    1010-6030

  • e-ISSN

    1873-2666

  • Svazek periodika

    447

  • Číslo periodika v rámci svazku

    JAN 15

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    15

  • Strana od-do

    115260

  • Kód UT WoS článku

    001104004900001

  • EID výsledku v databázi Scopus

    2-s2.0-85174184386