Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F24%3A00583500" target="_blank" >RIV/67985858:_____/24:00583500 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60076658:12310/24:43908292 RIV/44555601:13440/24:43898358

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0351469" target="_blank" >https://hdl.handle.net/11104/0351469</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0188104" target="_blank" >10.1063/5.0188104</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets

  • Popis výsledku v původním jazyce

    Graphene-based applications, such as supercapacitors or capacitive deionization, take place in an aqueous environment, and they benefit from molecular-level insights into the behavior of aqueous electrolyte solutions in single-digit graphene nanopores with a size comparable to a few molecular diameters. Under single-digit graphene nanoconfinement (smallest dimension <2 nm), water and ions behave drastically different than in the bulk. Most aqueous electrolytes in the graphene-based applications as well as in nature contain a mix of electrolytes. We study several prototypical aqueous mixed alkali-chloride electrolytes containing an equimolar fraction of Li/Na, Li/K, or Na/K cations confined between neutral and positively or negatively charged parallel graphene sheets. The strong hydration shell of small Li+ vs a larger Na+ or large K+ with weaker or weak hydration shells affects the interplay between the ions’s propensity to hydrate or dehydrate under the graphene nanoconfinement and the strength of the ion–graphene interactions mediated by confinement-induced layered water. We perform molecular dynamics simulations of the confined mixed-cation electrolytes using the effectively polarizable force field for electrolyte–graphene systems and focused on a relation between the electrochemical adsorption and structural properties of the water molecules and ions and their diffusion behavior. The simulations show that the one-layer nanoslits have the biggest impact on the ions’ adsorption and the water and ions’ diffusion. The positively charged one-layer nanoslits only allow for Cl− adsorption and strengthen the intermolecular bonding, which along with the ultrathin confinement substantially reduces the water and Cl− diffusion. In contrast, the negatively charged one-layer nanoslits only allow for adsorption of weakly hydrated Na+ or K+ and substantially break up the non-covalent bond network, which leads to the enhancement of the water and Na+ or K+ diffusion up to or even above the bulk diffusion. In wider nanoslits, cations adsorb closer to the graphene surfaces than Cl−’s with preferential adsorption of a weakly hydrated cation over a strongly hydrated cation. The positive graphene charge has an intuitive effect on the adsorption of weakly hydrated Na+’s or K+’s and Cl−’s and a counterintuitive effect on the adsorption of strongly hydrated Li+’s. On the other hand, the negative surface charge has an intuitive effect on the adsorption of both types of cations and only mild intuitive or counterintuitive effects on the Cl− adsorption. The diffusion of water molecules and ions confined in the wider nanoslits is reduced with respect to the bulk diffusion, more for the positive graphene charge, which strengthened the intermolecular bonding, and less for the negative surface charge, which weakened the non-covalent bond network.

  • Název v anglickém jazyce

    Structure and self-diffusivity of mixed-cation electrolytes between neutral and charged graphene sheets

  • Popis výsledku anglicky

    Graphene-based applications, such as supercapacitors or capacitive deionization, take place in an aqueous environment, and they benefit from molecular-level insights into the behavior of aqueous electrolyte solutions in single-digit graphene nanopores with a size comparable to a few molecular diameters. Under single-digit graphene nanoconfinement (smallest dimension <2 nm), water and ions behave drastically different than in the bulk. Most aqueous electrolytes in the graphene-based applications as well as in nature contain a mix of electrolytes. We study several prototypical aqueous mixed alkali-chloride electrolytes containing an equimolar fraction of Li/Na, Li/K, or Na/K cations confined between neutral and positively or negatively charged parallel graphene sheets. The strong hydration shell of small Li+ vs a larger Na+ or large K+ with weaker or weak hydration shells affects the interplay between the ions’s propensity to hydrate or dehydrate under the graphene nanoconfinement and the strength of the ion–graphene interactions mediated by confinement-induced layered water. We perform molecular dynamics simulations of the confined mixed-cation electrolytes using the effectively polarizable force field for electrolyte–graphene systems and focused on a relation between the electrochemical adsorption and structural properties of the water molecules and ions and their diffusion behavior. The simulations show that the one-layer nanoslits have the biggest impact on the ions’ adsorption and the water and ions’ diffusion. The positively charged one-layer nanoslits only allow for Cl− adsorption and strengthen the intermolecular bonding, which along with the ultrathin confinement substantially reduces the water and Cl− diffusion. In contrast, the negatively charged one-layer nanoslits only allow for adsorption of weakly hydrated Na+ or K+ and substantially break up the non-covalent bond network, which leads to the enhancement of the water and Na+ or K+ diffusion up to or even above the bulk diffusion. In wider nanoslits, cations adsorb closer to the graphene surfaces than Cl−’s with preferential adsorption of a weakly hydrated cation over a strongly hydrated cation. The positive graphene charge has an intuitive effect on the adsorption of weakly hydrated Na+’s or K+’s and Cl−’s and a counterintuitive effect on the adsorption of strongly hydrated Li+’s. On the other hand, the negative surface charge has an intuitive effect on the adsorption of both types of cations and only mild intuitive or counterintuitive effects on the Cl− adsorption. The diffusion of water molecules and ions confined in the wider nanoslits is reduced with respect to the bulk diffusion, more for the positive graphene charge, which strengthened the intermolecular bonding, and less for the negative surface charge, which weakened the non-covalent bond network.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-27338S" target="_blank" >GA21-27338S: Kapacitní deionizace: Porozumění pomocí molekulárního modelování</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Svazek periodika

    160

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    094701

  • Kód UT WoS článku

    001178860800009

  • EID výsledku v databázi Scopus

    2-s2.0-85186319693