Modeling temperature-dependent transport properties in dissipative particle dynamics: A top-down coarse-graining toward realistic dynamics at the mesoscale
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F24%3A00587626" target="_blank" >RIV/67985858:_____/24:00587626 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/24:43898476
Výsledek na webu
<a href="https://hdl.handle.net/11104/0354742" target="_blank" >https://hdl.handle.net/11104/0354742</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0207530" target="_blank" >10.1063/5.0207530</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling temperature-dependent transport properties in dissipative particle dynamics: A top-down coarse-graining toward realistic dynamics at the mesoscale
Popis výsledku v původním jazyce
Dissipative particle dynamics (DPD) is a widespread computational tool to simulate the behavior of soft matter and liquids in and out of equilibrium. Although there are many applications in which the effect of temperature is relevant, most of the DPD studies have been carried out at a fixed system temperature. Therefore, this work investigates how to incorporate the effect of system temperature variation within the DPD model to capture realistic temperature-dependent system properties. In particular, this work focuses on the relationship between temperature and transport properties, and therefore, an extended DPD model for transport properties prediction is employed. Transport properties, unlike the equilibrium properties, are often overlooked despite their significant influence on the flow dynamics of non-isothermal mesoscopic systems. Moreover, before simulating the response of the system induced by a temperature change, it is important to first estimate transport properties at a certain temperature. Thus here, the same fluid is simulated across different temperature conditions using isothermal DPD with the aim to identify a temperature-dependent parametrization methodology, capable of ensuring the correctness of both equilibrium and dynamical properties. Liquid water is used as a model system for these analyses. This work proposes a temperature-dependent form of the extended DPD model where both conservative and non-conservative interaction parameters incorporate the variation of the temperature. The predictions provided by our simulations are in excellent agreement with experimental data.
Název v anglickém jazyce
Modeling temperature-dependent transport properties in dissipative particle dynamics: A top-down coarse-graining toward realistic dynamics at the mesoscale
Popis výsledku anglicky
Dissipative particle dynamics (DPD) is a widespread computational tool to simulate the behavior of soft matter and liquids in and out of equilibrium. Although there are many applications in which the effect of temperature is relevant, most of the DPD studies have been carried out at a fixed system temperature. Therefore, this work investigates how to incorporate the effect of system temperature variation within the DPD model to capture realistic temperature-dependent system properties. In particular, this work focuses on the relationship between temperature and transport properties, and therefore, an extended DPD model for transport properties prediction is employed. Transport properties, unlike the equilibrium properties, are often overlooked despite their significant influence on the flow dynamics of non-isothermal mesoscopic systems. Moreover, before simulating the response of the system induced by a temperature change, it is important to first estimate transport properties at a certain temperature. Thus here, the same fluid is simulated across different temperature conditions using isothermal DPD with the aim to identify a temperature-dependent parametrization methodology, capable of ensuring the correctness of both equilibrium and dynamical properties. Liquid water is used as a model system for these analyses. This work proposes a temperature-dependent form of the extended DPD model where both conservative and non-conservative interaction parameters incorporate the variation of the temperature. The predictions provided by our simulations are in excellent agreement with experimental data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chemical Physics
ISSN
0021-9606
e-ISSN
1089-7690
Svazek periodika
161
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
034112
Kód UT WoS článku
001281819100006
EID výsledku v databázi Scopus
2-s2.0-85198730257