Simulation of a turbulent flow around a moving circular cylinder using the LBM
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985874%3A_____%2F16%3A00468462" target="_blank" >RIV/67985874:_____/16:00468462 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulation of a turbulent flow around a moving circular cylinder using the LBM
Popis výsledku v původním jazyce
The unsteady flow incited by motion of a circular cylinder in a rectangular container in water is examined by the Lattice Boltzmann Method (LBM) based simulation. The variable velocity of the cylinder is controlled by an electrical device. First the cylinder approaches the bottom, then it rests for some time at the bottom, and finally it leaves along the original path. The turbulent flow around the cylinder arises as the Reynolds number of the cylinder is Re 10^3 - 10^4. The most important advantage of the LBM consists in the possibility of overall parallelization of the algorithm which is enabled by its local dynamics. However, there are still accuracy and stability issues to be established. For high values of the Reynolds number the LBM can be subject to numerical instabilities which are caused by incapability of the LBM to dissipate energy at the sub-grid scale due to very large gradients. Hence, the turbulent flow is simulated with the help of the LBM enriched with the Smagorinsky subgrid model. The correctness of the simulation is validated against experimental outputs.
Název v anglickém jazyce
Simulation of a turbulent flow around a moving circular cylinder using the LBM
Popis výsledku anglicky
The unsteady flow incited by motion of a circular cylinder in a rectangular container in water is examined by the Lattice Boltzmann Method (LBM) based simulation. The variable velocity of the cylinder is controlled by an electrical device. First the cylinder approaches the bottom, then it rests for some time at the bottom, and finally it leaves along the original path. The turbulent flow around the cylinder arises as the Reynolds number of the cylinder is Re 10^3 - 10^4. The most important advantage of the LBM consists in the possibility of overall parallelization of the algorithm which is enabled by its local dynamics. However, there are still accuracy and stability issues to be established. For high values of the Reynolds number the LBM can be subject to numerical instabilities which are caused by incapability of the LBM to dissipate energy at the sub-grid scale due to very large gradients. Hence, the turbulent flow is simulated with the help of the LBM enriched with the Smagorinsky subgrid model. The correctness of the simulation is validated against experimental outputs.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BK - Mechanika tekutin
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-18870S" target="_blank" >GA15-18870S: Multi-škálová simulace pohybu částic v turbulentním proudu</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů