Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F17%3A00484841" target="_blank" >RIV/67985882:_____/17:00484841 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/17:00318412
Výsledek na webu
<a href="http://dx.doi.org/10.1371/journal.pone.0188622" target="_blank" >http://dx.doi.org/10.1371/journal.pone.0188622</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0188622" target="_blank" >10.1371/journal.pone.0188622</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance
Popis výsledku v původním jazyce
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal
Název v anglickém jazyce
Poisson pre-processing of nonstationary photonic signals: Signals with equality between mean and variance
Popis výsledku anglicky
Photonic signals are broadly exploited in communication and sensing and they typically exhibit Poisson-like statistics. In a common scenario where the intensity of the photonic signals is low and one needs to remove a nonstationary trend of the signals for any further analysis, one faces an obstacle: due to the dependence between the mean and variance typical for a Poisson-like process, information about the trend remains in the variance even after the trend has been subtracted, possibly yielding artifactual results in further analyses. Commonly available detrending or normalizing methods cannot cope with this issue. To alleviate this issue we developed a suitable pre-processing method for the signals that originate from a Poisson-like process. In this paper, a Poisson pre-processing method for nonstationary time series with Poisson distribution is developed and tested on computer-generated model data and experimental data of chemiluminescence from human neutrophils and mung seeds. The presented method transforms a nonstationary Poisson signal into a stationary signal with a Poisson distribution while preserving the type of photocount distribution and phase-space structure of the signal. The importance of the suggested pre-processing method is shown in Fano factor and Hurst exponent analysis of both computer-generated model signals and experimental photonic signals. It is demonstrated that our pre-processing method is superior to standard detrending-based methods whenever further signal analysis is sensitive to variance of the signal
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-29294S" target="_blank" >GA13-29294S: Fotonické biosignály: měření a charakterizace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000417337800031
EID výsledku v databázi Scopus
2-s2.0-85037533237