Water models in molecular dynamics simulation prediction of dielectric properties of biomaterials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F19%3A00499893" target="_blank" >RIV/67985882:_____/19:00499893 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8510803" target="_blank" >https://ieeexplore.ieee.org/document/8510803</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JERM.2018.2878379" target="_blank" >10.1109/JERM.2018.2878379</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Water models in molecular dynamics simulation prediction of dielectric properties of biomaterials
Popis výsledku v původním jazyce
To develop and reliably use diagnostic and therapeutic methods employing microwaves, we need to have an accurate knowledge of biological dielectric properties. Traditionally, dielectric properties of biosamples are determined experimentally. However, such measurements require dedicated hardware and physical availability of sufficient volume of biological samples of interest. Instead, here we demonstrate the prediction of complex permittivity of a simple biomolecular sample using computational molecular dynamics simulations. We focus here on the role of a molecular model of water since it is the major compound determining microwave dielectric properties of biological tissues and wet samples. Here, for the first time, we analyze how the common molecular water models (SPCE, TIP3P, and TIP4P) affect complex permittivity of biomolecular solutions predicted by molecular dynamics simulations. We found that the type of the molecular water model used in the simulation affects not only water contribution but also biomolecule contribution to the permittivity spectra. Our results contribute to in silico prediction and understanding of dielectric properties of biomaterials
Název v anglickém jazyce
Water models in molecular dynamics simulation prediction of dielectric properties of biomaterials
Popis výsledku anglicky
To develop and reliably use diagnostic and therapeutic methods employing microwaves, we need to have an accurate knowledge of biological dielectric properties. Traditionally, dielectric properties of biosamples are determined experimentally. However, such measurements require dedicated hardware and physical availability of sufficient volume of biological samples of interest. Instead, here we demonstrate the prediction of complex permittivity of a simple biomolecular sample using computational molecular dynamics simulations. We focus here on the role of a molecular model of water since it is the major compound determining microwave dielectric properties of biological tissues and wet samples. Here, for the first time, we analyze how the common molecular water models (SPCE, TIP3P, and TIP4P) affect complex permittivity of biomolecular solutions predicted by molecular dynamics simulations. We found that the type of the molecular water model used in the simulation affects not only water contribution but also biomolecule contribution to the permittivity spectra. Our results contribute to in silico prediction and understanding of dielectric properties of biomaterials
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology
ISSN
2469-7249
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
97-104
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85066002394