Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Topological edge states in coupled photonic waveguides under periodic driving

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F19%3A00519186" target="_blank" >RIV/67985882:_____/19:00519186 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26210/19:PU135674

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Topological edge states in coupled photonic waveguides under periodic driving

  • Popis výsledku v původním jazyce

    Discrete photonic systems such as coupled waveguide arrays represent convenient systems in which one can explore a rich variety of the quantum-optical analogies. We consider a photonic implementation of the Su-Schriefer-Heeger (SSH) model in which a chain of identical sites coupled via alternating strong and weak bonds is replaced by an array of identical single-mode waveguides where their mutual coupling is modulated by bending the waveguides in transversal or longitudinal direction. By using Floquet theory we study the spectral properties of the system consisting of an infinite chain of coupled dielectric waveguides under time-periodic driving. We determine the spectral properties of such system by using coupled-mode theory (CMT) to verify the results predicted by Floquet analysis [1]. In particular, we studied the population of the newly created edge states at the topological transitions in Floquet spectra at which the topologically trivial system becomes nontrivial and vice versa. The results of the numerical simulations confirm the predictions of Floquet analysis and resemble complementarity in the annihilation and creation of the edge states which occur at certain regions of quasienergy spectra due to the competition between the native topology and that of due to the driving

  • Název v anglickém jazyce

    Topological edge states in coupled photonic waveguides under periodic driving

  • Popis výsledku anglicky

    Discrete photonic systems such as coupled waveguide arrays represent convenient systems in which one can explore a rich variety of the quantum-optical analogies. We consider a photonic implementation of the Su-Schriefer-Heeger (SSH) model in which a chain of identical sites coupled via alternating strong and weak bonds is replaced by an array of identical single-mode waveguides where their mutual coupling is modulated by bending the waveguides in transversal or longitudinal direction. By using Floquet theory we study the spectral properties of the system consisting of an infinite chain of coupled dielectric waveguides under time-periodic driving. We determine the spectral properties of such system by using coupled-mode theory (CMT) to verify the results predicted by Floquet analysis [1]. In particular, we studied the population of the newly created edge states at the topological transitions in Floquet spectra at which the topologically trivial system becomes nontrivial and vice versa. The results of the numerical simulations confirm the predictions of Floquet analysis and resemble complementarity in the annihilation and creation of the edge states which occur at certain regions of quasienergy spectra due to the competition between the native topology and that of due to the driving

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů