Topological edge states in coupled photonic waveguides under periodic driving
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F19%3A00519186" target="_blank" >RIV/67985882:_____/19:00519186 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/19:PU135674
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topological edge states in coupled photonic waveguides under periodic driving
Popis výsledku v původním jazyce
Discrete photonic systems such as coupled waveguide arrays represent convenient systems in which one can explore a rich variety of the quantum-optical analogies. We consider a photonic implementation of the Su-Schriefer-Heeger (SSH) model in which a chain of identical sites coupled via alternating strong and weak bonds is replaced by an array of identical single-mode waveguides where their mutual coupling is modulated by bending the waveguides in transversal or longitudinal direction. By using Floquet theory we study the spectral properties of the system consisting of an infinite chain of coupled dielectric waveguides under time-periodic driving. We determine the spectral properties of such system by using coupled-mode theory (CMT) to verify the results predicted by Floquet analysis [1]. In particular, we studied the population of the newly created edge states at the topological transitions in Floquet spectra at which the topologically trivial system becomes nontrivial and vice versa. The results of the numerical simulations confirm the predictions of Floquet analysis and resemble complementarity in the annihilation and creation of the edge states which occur at certain regions of quasienergy spectra due to the competition between the native topology and that of due to the driving
Název v anglickém jazyce
Topological edge states in coupled photonic waveguides under periodic driving
Popis výsledku anglicky
Discrete photonic systems such as coupled waveguide arrays represent convenient systems in which one can explore a rich variety of the quantum-optical analogies. We consider a photonic implementation of the Su-Schriefer-Heeger (SSH) model in which a chain of identical sites coupled via alternating strong and weak bonds is replaced by an array of identical single-mode waveguides where their mutual coupling is modulated by bending the waveguides in transversal or longitudinal direction. By using Floquet theory we study the spectral properties of the system consisting of an infinite chain of coupled dielectric waveguides under time-periodic driving. We determine the spectral properties of such system by using coupled-mode theory (CMT) to verify the results predicted by Floquet analysis [1]. In particular, we studied the population of the newly created edge states at the topological transitions in Floquet spectra at which the topologically trivial system becomes nontrivial and vice versa. The results of the numerical simulations confirm the predictions of Floquet analysis and resemble complementarity in the annihilation and creation of the edge states which occur at certain regions of quasienergy spectra due to the competition between the native topology and that of due to the driving
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů