Tubulin Vibration Modes Are in the Subterahertz Range, and Their Electromagnetic Absorption Is Affected by Water
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F24%3A00597553" target="_blank" >RIV/67985882:_____/24:00597553 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01553?goto=supporting-info&articleRef=test" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01553?goto=supporting-info&articleRef=test</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.4c01553" target="_blank" >10.1021/acs.jpclett.4c01553</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tubulin Vibration Modes Are in the Subterahertz Range, and Their Electromagnetic Absorption Is Affected by Water
Popis výsledku v původním jazyce
Many proteins are thought to coordinate distant sites in their structures through a concerted action of global structural vibrations. However, the direct experimental spectroscopic detection of these vibration modes is rather elusive. We used normal-mode analysis to explore the dominant vibration modes of an all-atom model of the tubulin protein and described their characteristics using a large ensemble of tubulin structures. We quantified the frequency range of the normal vibrational modes to be in the subterahertz band, specifically between similar to 40 and similar to 160 GHz. Adding water layers to the model increases the frequencies of the low-frequency modes and narrows the frequency variations of the modes among the protein ensemble. We also showed how the electromagnetic absorption of tubulin vibration modes is affected by vibrational damping. These results contribute to our understanding of tubulin's vibrational and electromagnetic properties and provide a foundation for future attempts to control protein behavior via external electromagnetic fields.
Název v anglickém jazyce
Tubulin Vibration Modes Are in the Subterahertz Range, and Their Electromagnetic Absorption Is Affected by Water
Popis výsledku anglicky
Many proteins are thought to coordinate distant sites in their structures through a concerted action of global structural vibrations. However, the direct experimental spectroscopic detection of these vibration modes is rather elusive. We used normal-mode analysis to explore the dominant vibration modes of an all-atom model of the tubulin protein and described their characteristics using a large ensemble of tubulin structures. We quantified the frequency range of the normal vibrational modes to be in the subterahertz band, specifically between similar to 40 and similar to 160 GHz. Adding water layers to the model increases the frequencies of the low-frequency modes and narrows the frequency variations of the modes among the protein ensemble. We also showed how the electromagnetic absorption of tubulin vibration modes is affected by vibrational damping. These results contribute to our understanding of tubulin's vibrational and electromagnetic properties and provide a foundation for future attempts to control protein behavior via external electromagnetic fields.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-06873X" target="_blank" >GX20-06873X: SubTHz chipová zařízení pro řízení proteinových nanopřístrojů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Letters
ISSN
1948-7185
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
32
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
8334-8342
Kód UT WoS článku
001286300000001
EID výsledku v databázi Scopus
2-s2.0-85200809239