Matrix eigenvalue method for free-oscillations modelling of spherical elastic bodies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F17%3A00480847" target="_blank" >RIV/67985891:_____/17:00480847 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/17:10366653
Výsledek na webu
<a href="http://dx.doi.org/10.1093/gji/ggx353" target="_blank" >http://dx.doi.org/10.1093/gji/ggx353</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/gji/ggx353" target="_blank" >10.1093/gji/ggx353</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Matrix eigenvalue method for free-oscillations modelling of spherical elastic bodies
Popis výsledku v původním jazyce
Deformations and changes of the gravitational potential of pre-stressed self-gravitating elastic bodies caused by free oscillations are described by means of the momentum and Poisson equations and the constitutive relation. For spherically symmetric bodies, the equations and boundary conditions are transformed into ordinary differential equations of the second order by the spherical harmonic decomposition and further discretized by highly accurate pseudospectral difference schemes on Chebyshev grids, we pay special attention to the conditions at the centre of the models. We thus obtain a series of matrix eigenvalue problems for eigenfrequencies and eigenfunctions of the free oscillations. Accuracy of the presented numerical approach is tested by means of the Rayleigh quotients calculated for the eigenfrequencies up to 500 mHz. Both the modal frequencies and eigenfunctions are benchmarked against the output from the Mineos software package based on shooting methods. The presented technique is a promising alternative to widely used methods because it is stable and with a good capability up to high frequencies.
Název v anglickém jazyce
Matrix eigenvalue method for free-oscillations modelling of spherical elastic bodies
Popis výsledku anglicky
Deformations and changes of the gravitational potential of pre-stressed self-gravitating elastic bodies caused by free oscillations are described by means of the momentum and Poisson equations and the constitutive relation. For spherically symmetric bodies, the equations and boundary conditions are transformed into ordinary differential equations of the second order by the spherical harmonic decomposition and further discretized by highly accurate pseudospectral difference schemes on Chebyshev grids, we pay special attention to the conditions at the centre of the models. We thus obtain a series of matrix eigenvalue problems for eigenfrequencies and eigenfunctions of the free oscillations. Accuracy of the presented numerical approach is tested by means of the Rayleigh quotients calculated for the eigenfrequencies up to 500 mHz. Both the modal frequencies and eigenfunctions are benchmarked against the output from the Mineos software package based on shooting methods. The presented technique is a promising alternative to widely used methods because it is stable and with a good capability up to high frequencies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-04372S" target="_blank" >GA14-04372S: Složitost zdrojů tektonických zemětřesení na různých časoprostorových škálách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysical Journal International
ISSN
0956-540X
e-ISSN
—
Svazek periodika
211
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
1254-1271
Kód UT WoS článku
000412281300041
EID výsledku v databázi Scopus
—