Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F19%3A00506375" target="_blank" >RIV/67985891:_____/19:00506375 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007%2Fs10346-018-1090-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs10346-018-1090-1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10346-018-1090-1" target="_blank" >10.1007/s10346-018-1090-1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches

  • Popis výsledku v původním jazyce

    This study applied existing methods of landslide susceptibility modelling of the mountainous area of the Cordillera Blanca (Peru), which is prone to landslides. In heterogeneous regions as in the Cordillera Blanca, the performance of a physically based approach Stability Index Mapping (SINMAP) was compared to empirical statistical models using logistic regression and a landslide density model. All models were applied to three different digital elevation models (DEMs): ASTER GDEM, SRTM (both 30-m spatial resolution), and TanDEM-X (12-m spatial resolution). Obtained results were evaluated using the area under the receiver operating characteristic curve (AUC) approach, once for a landslide inventory which extends over the whole study area and once using an inventory of a smaller area. The physically based approach (AUCs between 0.567 and 0.625) performed worse than the statistical models (AUCs from 0.672 to 0.759) over the large area. Additionally, all models received higher performances within the small area. This coincided with differences of the variability of the DEM-derived characteristics (e.g. slope angle and curvature) from the small to the large evaluation area. Using the smaller evaluation area, all models received higher AUC values (0.743-0.799), and the impact of the DEMs was less visible. The analysis of the susceptibility showed that mainly the same slopes are considered as most or least susceptible by all models, but SINMAP is classifying larger areas as unstable or stable. Overall, this study showed that regional-scale landslide susceptibility modelling can lead to reasonable results even in regions with scarce model input data, but performances of different DEMs and models need to be evaluated carefully.

  • Název v anglickém jazyce

    Regional-scale landslide susceptibility modelling in the Cordillera Blanca, Peru—a comparison of different approaches

  • Popis výsledku anglicky

    This study applied existing methods of landslide susceptibility modelling of the mountainous area of the Cordillera Blanca (Peru), which is prone to landslides. In heterogeneous regions as in the Cordillera Blanca, the performance of a physically based approach Stability Index Mapping (SINMAP) was compared to empirical statistical models using logistic regression and a landslide density model. All models were applied to three different digital elevation models (DEMs): ASTER GDEM, SRTM (both 30-m spatial resolution), and TanDEM-X (12-m spatial resolution). Obtained results were evaluated using the area under the receiver operating characteristic curve (AUC) approach, once for a landslide inventory which extends over the whole study area and once using an inventory of a smaller area. The physically based approach (AUCs between 0.567 and 0.625) performed worse than the statistical models (AUCs from 0.672 to 0.759) over the large area. Additionally, all models received higher performances within the small area. This coincided with differences of the variability of the DEM-derived characteristics (e.g. slope angle and curvature) from the small to the large evaluation area. Using the smaller evaluation area, all models received higher AUC values (0.743-0.799), and the impact of the DEMs was less visible. The analysis of the susceptibility showed that mainly the same slopes are considered as most or least susceptible by all models, but SINMAP is classifying larger areas as unstable or stable. Overall, this study showed that regional-scale landslide susceptibility modelling can lead to reasonable results even in regions with scarce model input data, but performances of different DEMs and models need to be evaluated carefully.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Landslides

  • ISSN

    1612-510X

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    13

  • Strana od-do

    395-407

  • Kód UT WoS článku

    000460468500015

  • EID výsledku v databázi Scopus

    2-s2.0-85055695245