Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F21%3A00542168" target="_blank" >RIV/67985891:_____/21:00542168 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/21:10438537 RIV/00216208:11310/21:10438537
Výsledek na webu
<a href="https://www-sciencedirect-com.ezproxy.lib.cas.cz/science/article/pii/S0378775321000793?via%3Dihub" target="_blank" >https://www-sciencedirect-com.ezproxy.lib.cas.cz/science/article/pii/S0378775321000793?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpowsour.2021.229531" target="_blank" >10.1016/j.jpowsour.2021.229531</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells
Popis výsledku v původním jazyce
Proton-exchange membrane fuel cell (PEMFC) performance is strongly related to the complex transport of gas and charge carriers in the cathode catalyst layer. Thus, we investigated the transport properties of catalyst layers at different ionomer/carbon ratios, ranging from 0.1 to 1, focusing on oxygen, proton and electron transport. Oxygen transport was studied using the limiting current technique, separately analyzing the contributions of molecular, Knudsen, and ionomer transport resistances by changing the temperature and gas pressure. The proton and electron resistance of the catalyst layers were determined by impedance spectroscopy and current voltage measurements, respectively. The results showed that the performance of fuel cells can be enhanced by selecting a suitable ionomer/carbon ratio and that increasing the ionomer content decreases the proton resistance and increases the electron resistance of catalyst layers. Accordingly, low oxygen transport and proton resistance at an ionomer/carbon ratio of 0.6 (26.5%wt.) led to the highest fuel cell power density (595 mW cm(-2)). These results fully support well-established in numerous works optimal ionomer content, revealing the underlying mechanisms of high fuel cell performance. Furthermore, the porosimetry results and electron microscopy measurements confirmed that transport properties strongly affect fuel cell performance.
Název v anglickém jazyce
Ionomer content effect on charge and gas transport in the cathode catalyst layer of proton-exchange membrane fuel cells
Popis výsledku anglicky
Proton-exchange membrane fuel cell (PEMFC) performance is strongly related to the complex transport of gas and charge carriers in the cathode catalyst layer. Thus, we investigated the transport properties of catalyst layers at different ionomer/carbon ratios, ranging from 0.1 to 1, focusing on oxygen, proton and electron transport. Oxygen transport was studied using the limiting current technique, separately analyzing the contributions of molecular, Knudsen, and ionomer transport resistances by changing the temperature and gas pressure. The proton and electron resistance of the catalyst layers were determined by impedance spectroscopy and current voltage measurements, respectively. The results showed that the performance of fuel cells can be enhanced by selecting a suitable ionomer/carbon ratio and that increasing the ionomer content decreases the proton resistance and increases the electron resistance of catalyst layers. Accordingly, low oxygen transport and proton resistance at an ionomer/carbon ratio of 0.6 (26.5%wt.) led to the highest fuel cell power density (595 mW cm(-2)). These results fully support well-established in numerous works optimal ionomer content, revealing the underlying mechanisms of high fuel cell performance. Furthermore, the porosimetry results and electron microscopy measurements confirmed that transport properties strongly affect fuel cell performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Power Sources
ISSN
0378-7753
e-ISSN
1873-2755
Svazek periodika
490
Číslo periodika v rámci svazku
APR 1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
229531
Kód UT WoS článku
000621173500003
EID výsledku v databázi Scopus
2-s2.0-85100386437