Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: Initial results from three different sites in Czechia (central Europe)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F21%3A00545911" target="_blank" >RIV/67985891:_____/21:00545911 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/21:10431167
Výsledek na webu
<a href="https://gi.copernicus.org/articles/10/203/2021/" target="_blank" >https://gi.copernicus.org/articles/10/203/2021/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/gi-10-203-2021" target="_blank" >10.5194/gi-10-203-2021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: Initial results from three different sites in Czechia (central Europe)
Popis výsledku v původním jazyce
This paper describes a newly designed, experimental, and affordable rock slope monitoring system. This system is being used to monitor three rock slopes in Czechia for a period of up to 2 years. The instrumented rock slopes have different lithology (sandstone, limestone, and granite), aspect, and structural and mechanical properties. Induction crackmeters monitor the dynamic of joints, which separate unstable rock blocks from the rock face. This setup works with a repeatability of measurements of 0.05g mm. External destabilising factors (air temperature, precipitation, incoming and outgoing radiation, etc.) are measured by a weather station placed directly within the rock slope. Thermal behaviour in the rock slope surface zone is monitored using a compound temperature probe, placed inside a 3g m deep subhorizontal borehole, which is insulated from external air temperature. Additionally, one thermocouple is placed directly on the rock slope surface. From the time series measured to date (the longest since autumn 2018), we are able to distinguish differences between the annual and diurnal temperature cycles of the monitored sites. From the first data, a greater annual joint dynamic is measured in the case of larger blocks, however, smaller blocks are more responsive to short-Term diurnal temperature cycles. Differences in the thermal regime between the sites are also recognisable and are caused mainly by different slope aspect, rock mass thermal conductivity, and colour. These differences will be explained by the statistical analysis of longer time series in the future.
Název v anglickém jazyce
Observation of the rock slope thermal regime, coupled with crackmeter stability monitoring: Initial results from three different sites in Czechia (central Europe)
Popis výsledku anglicky
This paper describes a newly designed, experimental, and affordable rock slope monitoring system. This system is being used to monitor three rock slopes in Czechia for a period of up to 2 years. The instrumented rock slopes have different lithology (sandstone, limestone, and granite), aspect, and structural and mechanical properties. Induction crackmeters monitor the dynamic of joints, which separate unstable rock blocks from the rock face. This setup works with a repeatability of measurements of 0.05g mm. External destabilising factors (air temperature, precipitation, incoming and outgoing radiation, etc.) are measured by a weather station placed directly within the rock slope. Thermal behaviour in the rock slope surface zone is monitored using a compound temperature probe, placed inside a 3g m deep subhorizontal borehole, which is insulated from external air temperature. Additionally, one thermocouple is placed directly on the rock slope surface. From the time series measured to date (the longest since autumn 2018), we are able to distinguish differences between the annual and diurnal temperature cycles of the monitored sites. From the first data, a greater annual joint dynamic is measured in the case of larger blocks, however, smaller blocks are more responsive to short-Term diurnal temperature cycles. Differences in the thermal regime between the sites are also recognisable and are caused mainly by different slope aspect, rock mass thermal conductivity, and colour. These differences will be explained by the statistical analysis of longer time series in the future.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/SS02030023" target="_blank" >SS02030023: Horninové prostředí a suroviny</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geoscientific Instrumentation, Methods and Data Systems
ISSN
2193-0856
e-ISSN
2193-0864
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
16
Strana od-do
203-218
Kód UT WoS článku
000694016300001
EID výsledku v databázi Scopus
2-s2.0-85114648491