Melting behaviour of simulated radioactive waste as functions of different redox iron-bearing raw materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F22%3A00562746" target="_blank" >RIV/67985891:_____/22:00562746 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/22:43925588
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022311522004329" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022311522004329</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnucmat.2022.153946" target="_blank" >10.1016/j.jnucmat.2022.153946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Melting behaviour of simulated radioactive waste as functions of different redox iron-bearing raw materials
Popis výsledku v původním jazyce
Improved understanding of the mechanisms by which foaming occurs during vitrification of high-level radioactive waste feeds prior to operation of the Waste Treatment and Immobilization Plant at the Hanford Site, USA, will help to obviate operational issues and reduce the duration of the clean-up project by enhancing the feed-to-glass conversion. The HLW-NG-Fe2 high-iron simulated waste feed has been shown to exhibit excessive foaming, and the most recent predictive models overestimate the feed melting rate. The influence of delivering iron as a Fe2+-bearing raw material (FeC2O4 center dot 2H(2)O), rather than a Fe3+ (Fe(OH)(3)) material, was evaluated in terms of the effects on foaming during melting, to improve understanding of the mechanisms of foam production. A decrease of 50.0 +/- 10.8% maximum generated foam volume is observed using FeC2O4 center dot 2H(2)O as the iron source, compared with Fe(OH)(3). This is determined to be due to a large release of CO2 before the foam onset temperature (the temperature above which the liquid phases forming are sufficiently viscous to trap the gases) and suppression of O-2 evolution during foam collapse. Structural analyses of simulated waste feeds after different stages of melting show that the remaining Fe2+ in the modified feed is oxidised to Fe3+ at temperatures between 600 and 800 degrees C. This feed was tested in a Laboratory Scale Melter with no excessive foaming or feeding issues. Analysis of the final glass products indicates that the glasses produced using the original HLW-NG-Fe-2 feed using Fe(OH)(3) and the feed made with FeC2O4 center dot 2H(2)O are structurally similar but not identical: the difference in the structure converges when the glass is melted for 24 h, suggesting a transient structure slightly different to that of the baseline in the glass produced using the reduced raw material. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Název v anglickém jazyce
Melting behaviour of simulated radioactive waste as functions of different redox iron-bearing raw materials
Popis výsledku anglicky
Improved understanding of the mechanisms by which foaming occurs during vitrification of high-level radioactive waste feeds prior to operation of the Waste Treatment and Immobilization Plant at the Hanford Site, USA, will help to obviate operational issues and reduce the duration of the clean-up project by enhancing the feed-to-glass conversion. The HLW-NG-Fe2 high-iron simulated waste feed has been shown to exhibit excessive foaming, and the most recent predictive models overestimate the feed melting rate. The influence of delivering iron as a Fe2+-bearing raw material (FeC2O4 center dot 2H(2)O), rather than a Fe3+ (Fe(OH)(3)) material, was evaluated in terms of the effects on foaming during melting, to improve understanding of the mechanisms of foam production. A decrease of 50.0 +/- 10.8% maximum generated foam volume is observed using FeC2O4 center dot 2H(2)O as the iron source, compared with Fe(OH)(3). This is determined to be due to a large release of CO2 before the foam onset temperature (the temperature above which the liquid phases forming are sufficiently viscous to trap the gases) and suppression of O-2 evolution during foam collapse. Structural analyses of simulated waste feeds after different stages of melting show that the remaining Fe2+ in the modified feed is oxidised to Fe3+ at temperatures between 600 and 800 degrees C. This feed was tested in a Laboratory Scale Melter with no excessive foaming or feeding issues. Analysis of the final glass products indicates that the glasses produced using the original HLW-NG-Fe-2 feed using Fe(OH)(3) and the feed made with FeC2O4 center dot 2H(2)O are structurally similar but not identical: the difference in the structure converges when the glass is melted for 24 h, suggesting a transient structure slightly different to that of the baseline in the glass produced using the reduced raw material. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Nuclear Materials
ISSN
0022-3115
e-ISSN
1873-4820
Svazek periodika
569
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
153946
Kód UT WoS článku
000864543400006
EID výsledku v databázi Scopus
2-s2.0-85135302153