Microporous carbon foams: The effect of nitrogen-doping on CO2 capture and separation via pressure swing adsorption
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F23%3A00573807" target="_blank" >RIV/67985891:_____/23:00573807 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cej.2023.144524" target="_blank" >https://doi.org/10.1016/j.cej.2023.144524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2023.144524" target="_blank" >10.1016/j.cej.2023.144524</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microporous carbon foams: The effect of nitrogen-doping on CO2 capture and separation via pressure swing adsorption
Popis výsledku v původním jazyce
This work investigates the effect of nitrogen doping on the porous structure and CO2 adsorption properties of hierarchically porous carbon foams, at different temperatures and pressures. A series of carbon foams with nitrogen contents of ∼7 to 13 at % is prepared by reaction of sodium ethoxide with different amino alcohols (namely monoethanolamine, diethanolamine, and triethanolamine), followed by thermal decomposition of the reaction product. The structure, morphology, porosity and chemical composition are studied using appropriate methods. The resulting material comprises micron-scale macropores combined with unrestricted micropores and mesopores embedded in the carbon walls. It is found that both nitrogen species and ultra-micropores contribute positively to CO2 uptake. The carbon foam with a nitrogen content of ∼7 at % (as well as an ultra-micropore volume of 0.44 cm3 g−1 and a specific surface area of 1549 m2 g-1) displays the highest CO2 uptake, adsorbing 5.14 mmol g−1 at 273 K, 3.22 mmol g−1 at 298 K, or 1.93 mmol g−1 at 323 K. This nitrogen-doped carbon foam adsorbs more CO2 than the undoped carbon foam reference, despite having significantly lower ultra-micropore volume and higher specific surface area. This highlights the importance of nitrogen species in CO2 capture. However, increasing the nitrogen content leads to suppression of the micropore volume, resulting in poor CO2 uptake. High CO2/N2 selectivity with good separation of CO2 from the CO2-N2 gas mixture, fast adsorption via physisorption, and excellent cycling durability are also observed, pointing towards the high regenerative ability of these materials.
Název v anglickém jazyce
Microporous carbon foams: The effect of nitrogen-doping on CO2 capture and separation via pressure swing adsorption
Popis výsledku anglicky
This work investigates the effect of nitrogen doping on the porous structure and CO2 adsorption properties of hierarchically porous carbon foams, at different temperatures and pressures. A series of carbon foams with nitrogen contents of ∼7 to 13 at % is prepared by reaction of sodium ethoxide with different amino alcohols (namely monoethanolamine, diethanolamine, and triethanolamine), followed by thermal decomposition of the reaction product. The structure, morphology, porosity and chemical composition are studied using appropriate methods. The resulting material comprises micron-scale macropores combined with unrestricted micropores and mesopores embedded in the carbon walls. It is found that both nitrogen species and ultra-micropores contribute positively to CO2 uptake. The carbon foam with a nitrogen content of ∼7 at % (as well as an ultra-micropore volume of 0.44 cm3 g−1 and a specific surface area of 1549 m2 g-1) displays the highest CO2 uptake, adsorbing 5.14 mmol g−1 at 273 K, 3.22 mmol g−1 at 298 K, or 1.93 mmol g−1 at 323 K. This nitrogen-doped carbon foam adsorbs more CO2 than the undoped carbon foam reference, despite having significantly lower ultra-micropore volume and higher specific surface area. This highlights the importance of nitrogen species in CO2 capture. However, increasing the nitrogen content leads to suppression of the micropore volume, resulting in poor CO2 uptake. High CO2/N2 selectivity with good separation of CO2 from the CO2-N2 gas mixture, fast adsorption via physisorption, and excellent cycling durability are also observed, pointing towards the high regenerative ability of these materials.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
471
Číslo periodika v rámci svazku
1 SEP
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
144524
Kód UT WoS článku
001031834200001
EID výsledku v databázi Scopus
2-s2.0-85164258245