Cold-cap structure in a slurry-fed electric melter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F24%3A00577450" target="_blank" >RIV/67985891:_____/24:00577450 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/24:43930991
Výsledek na webu
<a href="https://doi.org/10.1111/ijag.16645" target="_blank" >https://doi.org/10.1111/ijag.16645</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ijag.16645" target="_blank" >10.1111/ijag.16645</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cold-cap structure in a slurry-fed electric melter
Popis výsledku v původním jazyce
As glass batch is charged into an electric melter, a cold cap forms on the glass melt surface. Heat transfer to the cold cap from the molten glass below and the melter atmosphere above determines the melting rate. A mathematical model of the cold cap and the experimental kinetic data of the feed-to-glass conversion that were collected for several simulated low-activity and high-level waste melter feeds allowed us to develop relationships between the internal structure of the cold cap, its properties, its thickness, and the internal heat transfer. This contribution shows the distribution of major crystalline phases and the cumulative evolution of gases within the cold cap. It also examines the temperature, conversion degree, and heating rate the melter feed is experiencing during the passage through the cold cap and their effects on the cold-cap bottom temperature and morphology, which are important for the computational fluid dynamics simulations of melters. © 2023 American Ceramics Society and Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Název v anglickém jazyce
Cold-cap structure in a slurry-fed electric melter
Popis výsledku anglicky
As glass batch is charged into an electric melter, a cold cap forms on the glass melt surface. Heat transfer to the cold cap from the molten glass below and the melter atmosphere above determines the melting rate. A mathematical model of the cold cap and the experimental kinetic data of the feed-to-glass conversion that were collected for several simulated low-activity and high-level waste melter feeds allowed us to develop relationships between the internal structure of the cold cap, its properties, its thickness, and the internal heat transfer. This contribution shows the distribution of major crystalline phases and the cumulative evolution of gases within the cold cap. It also examines the temperature, conversion degree, and heating rate the melter feed is experiencing during the passage through the cold cap and their effects on the cold-cap bottom temperature and morphology, which are important for the computational fluid dynamics simulations of melters. © 2023 American Ceramics Society and Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA18075" target="_blank" >LTAUSA18075: Analýza pěnění – kritického procesu při přeměně kmene na sklo</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Applied Glass Science
ISSN
2041-1286
e-ISSN
2041-1294
Svazek periodika
15
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
73-87
Kód UT WoS článku
001083806400001
EID výsledku v databázi Scopus
2-s2.0-85174203426