Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mechanical and thermal properties of geopolymers derived from metakaolin with iron mine waste

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F24%3A00587229" target="_blank" >RIV/67985891:_____/24:00587229 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.clay.2024.107452" target="_blank" >https://doi.org/10.1016/j.clay.2024.107452</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.clay.2024.107452" target="_blank" >10.1016/j.clay.2024.107452</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mechanical and thermal properties of geopolymers derived from metakaolin with iron mine waste

  • Popis výsledku v původním jazyce

    The construction sector is a major contributor to the increase in energy consumption and CO2 emissions, predominantly through the production of Ordinary Portland Cement (OPC). Recent research has focused on building materials, particularly focusing on amorphous aluminosilicates such as geopolymers, with the objective of alleviating environmental impact by enhancing energy management and embracing more sustainable, cost-effective production techniques while maintaining mechanical and thermal properties. This investigation scrutinizes the mechanical and thermal properties of geopolymers based on metakaolin (MK) and incorporating iron mine waste (Hem), predominantly composed of hematite, across various proportions (ranging from 0% to 50% Hem). Diverse methodologies, including compressive strength testing, bulk density measurement, X-ray diffraction, and thermal conductivity analysis, were utilized to characterize the geopolymers. The results revealed that formulations consisting of 100%MK and 90%MK10%Hem exhibit the highest compressive strengths, measuring at 40 MPa, after a 90-day curing period. However, the most sustainable option, yielding a compressive strength of 37 MPa, is observed in the formulation comprising 60%MK40%Hem, due to its increased use of mine waste. Additionally, geopolymers incorporating higher proportions of mine waste showed reduced thermal conductivity and diffusivity. For instance, the thermal conductivity of the 100%MK geopolymer was recorded at 0.58 W/m•K, with a diffusivity of 0.46 × 10−6 m2/s, whereas the formulation containing 60%MK40%Hem displayed values of 0.46 W/m•K and 0.38 × 10−6 m2/s, respectively. These diminished values signify an enhancement in energy efficiency within buildings employing geopolymers incorporating iron mine waste.

  • Název v anglickém jazyce

    Mechanical and thermal properties of geopolymers derived from metakaolin with iron mine waste

  • Popis výsledku anglicky

    The construction sector is a major contributor to the increase in energy consumption and CO2 emissions, predominantly through the production of Ordinary Portland Cement (OPC). Recent research has focused on building materials, particularly focusing on amorphous aluminosilicates such as geopolymers, with the objective of alleviating environmental impact by enhancing energy management and embracing more sustainable, cost-effective production techniques while maintaining mechanical and thermal properties. This investigation scrutinizes the mechanical and thermal properties of geopolymers based on metakaolin (MK) and incorporating iron mine waste (Hem), predominantly composed of hematite, across various proportions (ranging from 0% to 50% Hem). Diverse methodologies, including compressive strength testing, bulk density measurement, X-ray diffraction, and thermal conductivity analysis, were utilized to characterize the geopolymers. The results revealed that formulations consisting of 100%MK and 90%MK10%Hem exhibit the highest compressive strengths, measuring at 40 MPa, after a 90-day curing period. However, the most sustainable option, yielding a compressive strength of 37 MPa, is observed in the formulation comprising 60%MK40%Hem, due to its increased use of mine waste. Additionally, geopolymers incorporating higher proportions of mine waste showed reduced thermal conductivity and diffusivity. For instance, the thermal conductivity of the 100%MK geopolymer was recorded at 0.58 W/m•K, with a diffusivity of 0.46 × 10−6 m2/s, whereas the formulation containing 60%MK40%Hem displayed values of 0.46 W/m•K and 0.38 × 10−6 m2/s, respectively. These diminished values signify an enhancement in energy efficiency within buildings employing geopolymers incorporating iron mine waste.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Clay Science

  • ISSN

    0169-1317

  • e-ISSN

    1872-9053

  • Svazek periodika

    258

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    107452

  • Kód UT WoS článku

    001260652800001

  • EID výsledku v databázi Scopus

    2-s2.0-85196658858