Determination of the VS profile at a “noisy“ industrial site via active and passive data: The critical role of Love waves and the opportunities of multicomponent group velocity analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F24%3A00587622" target="_blank" >RIV/67985891:_____/24:00587622 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/24:10487513
Výsledek na webu
<a href="https://doi.org/10.1190/GEO2022-0540.1" target="_blank" >https://doi.org/10.1190/GEO2022-0540.1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1190/GEO2022-0540.1" target="_blank" >10.1190/GEO2022-0540.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of the VS profile at a “noisy“ industrial site via active and passive data: The critical role of Love waves and the opportunities of multicomponent group velocity analysis
Popis výsledku v původním jazyce
To define the procedures necessary to unambiguously define the subsurface model, a comprehensive set of active and passive seismic data was collected in an industrial area characterized by an extremely high level of background microtremors. Passive data are recorded to define three observables: the dispersion curve of the vertical component of Rayleigh waves via miniature array analysis of microtremors, the Love-wave dispersion curve via extended spatial autocorrelation, and the horizontal -to -vertical spectral ratio (HVSR). Active data used for the holistic analysis of surface waves are extracted from data recorded through a hybrid acquisition procedure accomplished with only two 3C geophones used to simultaneously define the HVSR at two points. Defined observables are combined according to three different approaches: the joint analysis of Rayleigh waves and HVSR, the joint analysis of Rayleigh and Love waves together with the HVSR, and the joint analysis of multicomponent group velocities together with the HVSR and Rayleigh-wave particle motion (RPM) curves. In agreement with the theory, data indicate that, in general, surface-wave modeling cannot be performed considering modal dispersion curves: dispersion obtained from passive data needs to be modeled considering the effective curve, whereas group velocity obtained from active data can be analyzed using the full velocity spectrum technique. Results indicate that joint inversion of Rayleigh-wave dispersion and HVSR does not necessarily ensure the correctness of the obtained S-wave velocity ( V S ) profile and that Love waves represent a key observable to fully constrain an unambiguous inversion procedure. However, the joint analysis of multicomponent group velocity spectra (from active multicomponent single-offset data) together with the HVSR and RPM curves is a further efficient way to obtain robust V S profiles through the active and passive data obtained by a single 3C geophone.
Název v anglickém jazyce
Determination of the VS profile at a “noisy“ industrial site via active and passive data: The critical role of Love waves and the opportunities of multicomponent group velocity analysis
Popis výsledku anglicky
To define the procedures necessary to unambiguously define the subsurface model, a comprehensive set of active and passive seismic data was collected in an industrial area characterized by an extremely high level of background microtremors. Passive data are recorded to define three observables: the dispersion curve of the vertical component of Rayleigh waves via miniature array analysis of microtremors, the Love-wave dispersion curve via extended spatial autocorrelation, and the horizontal -to -vertical spectral ratio (HVSR). Active data used for the holistic analysis of surface waves are extracted from data recorded through a hybrid acquisition procedure accomplished with only two 3C geophones used to simultaneously define the HVSR at two points. Defined observables are combined according to three different approaches: the joint analysis of Rayleigh waves and HVSR, the joint analysis of Rayleigh and Love waves together with the HVSR, and the joint analysis of multicomponent group velocities together with the HVSR and Rayleigh-wave particle motion (RPM) curves. In agreement with the theory, data indicate that, in general, surface-wave modeling cannot be performed considering modal dispersion curves: dispersion obtained from passive data needs to be modeled considering the effective curve, whereas group velocity obtained from active data can be analyzed using the full velocity spectrum technique. Results indicate that joint inversion of Rayleigh-wave dispersion and HVSR does not necessarily ensure the correctness of the obtained S-wave velocity ( V S ) profile and that Love waves represent a key observable to fully constrain an unambiguous inversion procedure. However, the joint analysis of multicomponent group velocity spectra (from active multicomponent single-offset data) together with the HVSR and RPM curves is a further efficient way to obtain robust V S profiles through the active and passive data obtained by a single 3C geophone.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geophysics
ISSN
0016-8033
e-ISSN
1942-2156
Svazek periodika
89
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
"„B209”"-"„B227”"
Kód UT WoS článku
001252291900003
EID výsledku v databázi Scopus
2-s2.0-85189445100