Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985904%3A_____%2F24%3A00599453" target="_blank" >RIV/67985904:_____/24:00599453 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/eva.70006" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/eva.70006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/eva.70006" target="_blank" >10.1111/eva.70006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish
Popis výsledku v původním jazyce
Species invading non-native habitats can cause irreversible environmental damage and economic harm. Yet, how introduced species become widespread invaders remains poorly understood. Adaptation within native-range habitats and rapid adaptation to new environments may both influence invasion success. Here, we examine these hypotheses using 7058 SNPs from 36 native, 40 introduced and 19 farmed populations of tench, a fish native to Eurasia. We examined genetic structure among these populations and accounted for long-term evolutionary history within the native range to assess whether introduced populations exhibited lower genetic diversity than native populations. Subsequent to infer genotype-environment correlations within native-range habitats, we assessed whether adaptation to native environments may have shaped the success of some introduced populations. At the broad scale, two glacial refugia contributed to the ancestry and genomic diversity of tench. However, native, introduced and farmed populations of admixed origin exhibited up to 10-fold more genetic diversity (i.e., observed heterozygosity, expected heterozygosity and allelic richness) compared to populations with predominantly single-source ancestry. The effects of introduction to a new location were also apparent as introduced populations exhibited fewer private alleles (mean = 9.9 and 18.9 private alleles in introduced and native populations, respectively) and higher population-specific Fst compared to native populations, highlighting their distinctiveness relative to the pool of allelic frequencies across tench populations. Finally, introduced populations with varying levels of genetic variation and similar genetic compositions have become established and persisted under strikingly different climatic and ecological conditions. Our results suggest that lack of prior adaptation and low genetic variation may not consistently hinder the success of introduced populations for species with a demonstrated ability to expand their native range.
Název v anglickém jazyce
Assessing the Impacts of Adaptation to Native-Range Habitats and Contemporary Founder Effects on Genetic Diversity in an Invasive Fish
Popis výsledku anglicky
Species invading non-native habitats can cause irreversible environmental damage and economic harm. Yet, how introduced species become widespread invaders remains poorly understood. Adaptation within native-range habitats and rapid adaptation to new environments may both influence invasion success. Here, we examine these hypotheses using 7058 SNPs from 36 native, 40 introduced and 19 farmed populations of tench, a fish native to Eurasia. We examined genetic structure among these populations and accounted for long-term evolutionary history within the native range to assess whether introduced populations exhibited lower genetic diversity than native populations. Subsequent to infer genotype-environment correlations within native-range habitats, we assessed whether adaptation to native environments may have shaped the success of some introduced populations. At the broad scale, two glacial refugia contributed to the ancestry and genomic diversity of tench. However, native, introduced and farmed populations of admixed origin exhibited up to 10-fold more genetic diversity (i.e., observed heterozygosity, expected heterozygosity and allelic richness) compared to populations with predominantly single-source ancestry. The effects of introduction to a new location were also apparent as introduced populations exhibited fewer private alleles (mean = 9.9 and 18.9 private alleles in introduced and native populations, respectively) and higher population-specific Fst compared to native populations, highlighting their distinctiveness relative to the pool of allelic frequencies across tench populations. Finally, introduced populations with varying levels of genetic variation and similar genetic compositions have become established and persisted under strikingly different climatic and ecological conditions. Our results suggest that lack of prior adaptation and low genetic variation may not consistently hinder the success of introduced populations for species with a demonstrated ability to expand their native range.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Evolutionary Applications
ISSN
1752-4571
e-ISSN
1752-4571
Svazek periodika
17
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
e70006
Kód UT WoS článku
001325645700001
EID výsledku v databázi Scopus
2-s2.0-85205953196