Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F16%3A00456840" target="_blank" >RIV/67985939:_____/16:00456840 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60077344:_____/16:00456840 RIV/60076658:12310/16:43890829
Výsledek na webu
<a href="http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149270" target="_blank" >http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149270</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0149270" target="_blank" >10.1371/journal.pone.0149270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation
Popis výsledku v původním jazyce
Functional diversity is a very important component of biodiversity that quantifies the difference in functional traits between organisms. However, functional diversity studies are often limited by the availability of trait data and functional diversity indices are very sensitive to missing data. The distribution of species abundance and trait data, and its transformation, may thus affect the accuracy of indices when data is incomplete. The transformation of the data used to calculate functional diversity indices was very often neglected by authors. Here we show how important the completeness and transformation of the data are. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset. We worked with datasets originating from completely surveyed 12, 59, and 8 plots and containing plant 62, and 297 and bird 238 species respectively. We ranked plots by functional diversity values calculated from full datasets and then from our increasingly incomplete datasets. We compared the ranking between the original and virtually reduced datasets to assess the accuracy of functional diversity indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of functional diversity indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. Functional diversity indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, functional diversity values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data.
Název v anglickém jazyce
Evaluating functional diversity: Missing trait data and the importance of species abundance structure and data transformation
Popis výsledku anglicky
Functional diversity is a very important component of biodiversity that quantifies the difference in functional traits between organisms. However, functional diversity studies are often limited by the availability of trait data and functional diversity indices are very sensitive to missing data. The distribution of species abundance and trait data, and its transformation, may thus affect the accuracy of indices when data is incomplete. The transformation of the data used to calculate functional diversity indices was very often neglected by authors. Here we show how important the completeness and transformation of the data are. Using an existing approach, we simulated the effects of missing trait data by gradually removing data from a plant, an ant and a bird community dataset. We worked with datasets originating from completely surveyed 12, 59, and 8 plots and containing plant 62, and 297 and bird 238 species respectively. We ranked plots by functional diversity values calculated from full datasets and then from our increasingly incomplete datasets. We compared the ranking between the original and virtually reduced datasets to assess the accuracy of functional diversity indices when used on datasets with increasingly missing data. Finally, we tested the accuracy of functional diversity indices with and without data transformation, and the effect of missing trait data per plot or per the whole pool of species. Functional diversity indices became less accurate as the amount of missing data increased, with the loss of accuracy depending on the index. But, where transformation improved the normality of the trait data, functional diversity values from incomplete datasets were more accurate than before transformation. The distribution of data and its transformation are therefore as important as data completeness and can even mitigate the effect of missing data.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
EH - Ekologie – společenstva
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS ONE
ISSN
1932-6203
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000371219000066
EID výsledku v databázi Scopus
2-s2.0-84960510984