Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A synthesis of empirical plant dispersal kernels

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F17%3A00478128" target="_blank" >RIV/67985939:_____/17:00478128 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1111/1365-2745.12666" target="_blank" >http://dx.doi.org/10.1111/1365-2745.12666</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/1365-2745.12666" target="_blank" >10.1111/1365-2745.12666</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A synthesis of empirical plant dispersal kernels

  • Popis výsledku v původním jazyce

    We synthesized empirical data describing seed dispersal and fitting general dispersal kernels representing major plant types and dispersal modes. * A comprehensive literature search resulted in 107 papers describing 168 dispersal kernels for 144 vascular plant species. The data covered 63 families, all the continents except Antarctica, and the broad vegetation types of forest, grassland, shrubland and more open habitats (e.g. deserts). We classified kernels in terms of dispersal mode (ant, ballistic, rodent, vertebrates other than rodents, vehicle or wind), plant growth form (climber, graminoid, herb, shrub or tree), seed mass and plant height. We fitted 11 widely used probability density functions to each of the 168 data sets to provide a statistical description of the dispersal kernel. The exponential power (ExP) and log-sech (LogS) functions performed best. Other 2-parameter functions varied in performance. For example, the log-normal and Weibull performed poorly, while the 2Dt and power law performed moderately well. Of the single-parameter functions, the Gaussian performed very poorly, while the exponential performed better. No function was among the best-fitting for all data sets. * For 10 plant growth form/dispersal mode combinations for which we had >3 data sets, we fitted ExP and LogS functions across multiple data sets to provide generalized dispersal kernels. We also fitted these functions to subdivisions of these growth form/dispersal mode combinations in terms of seed mass (for animal-dispersed seeds) or plant height (wind-dispersed) classes. These functions provided generally good fits to the grouped data sets, despite variation in empirical methods, local conditions, vegetation type and the exact dispersal process. Potential uses of our synthesis include the following: (i) choosing appropriate dispersal functions in mathematical models, (ii) selecting informative dispersal kernels for one's empirical study system, and (iii) using representative disper

  • Název v anglickém jazyce

    A synthesis of empirical plant dispersal kernels

  • Popis výsledku anglicky

    We synthesized empirical data describing seed dispersal and fitting general dispersal kernels representing major plant types and dispersal modes. * A comprehensive literature search resulted in 107 papers describing 168 dispersal kernels for 144 vascular plant species. The data covered 63 families, all the continents except Antarctica, and the broad vegetation types of forest, grassland, shrubland and more open habitats (e.g. deserts). We classified kernels in terms of dispersal mode (ant, ballistic, rodent, vertebrates other than rodents, vehicle or wind), plant growth form (climber, graminoid, herb, shrub or tree), seed mass and plant height. We fitted 11 widely used probability density functions to each of the 168 data sets to provide a statistical description of the dispersal kernel. The exponential power (ExP) and log-sech (LogS) functions performed best. Other 2-parameter functions varied in performance. For example, the log-normal and Weibull performed poorly, while the 2Dt and power law performed moderately well. Of the single-parameter functions, the Gaussian performed very poorly, while the exponential performed better. No function was among the best-fitting for all data sets. * For 10 plant growth form/dispersal mode combinations for which we had >3 data sets, we fitted ExP and LogS functions across multiple data sets to provide generalized dispersal kernels. We also fitted these functions to subdivisions of these growth form/dispersal mode combinations in terms of seed mass (for animal-dispersed seeds) or plant height (wind-dispersed) classes. These functions provided generally good fits to the grouped data sets, despite variation in empirical methods, local conditions, vegetation type and the exact dispersal process. Potential uses of our synthesis include the following: (i) choosing appropriate dispersal functions in mathematical models, (ii) selecting informative dispersal kernels for one's empirical study system, and (iii) using representative disper

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Ecology

  • ISSN

    0022-0477

  • e-ISSN

  • Svazek periodika

    105

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    6-19

  • Kód UT WoS článku

    000390331000002

  • EID výsledku v databázi Scopus

    2-s2.0-85006173289