MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context-dependence in biological invasions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F20%3A00533236" target="_blank" >RIV/67985939:_____/20:00533236 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/20:10420717
Výsledek na webu
<a href="http://hdl.handle.net/11104/0314191" target="_blank" >http://hdl.handle.net/11104/0314191</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3897/neobiota.62.52787" target="_blank" >10.3897/neobiota.62.52787</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context-dependence in biological invasions
Popis výsledku v původním jazyce
Macroecological studies aiming to explain and predict plant and animal naturalisations and invasions, and the resulting impacts, have, to date, rarely considered the joint effects of species traits, environment, and socioeconomic characteristics. To address this, we present the MAcroecological Framework for Invasive Aliens (MAFIA). The MAFIA explains the invasion phenomenon using three interacting classes of factors – alien species traits, location characteristics, and factors related to introduction events – and explicitly maps these interactions onto the invasion sequence from transport to naturalisation to invasion. The framework therefore helps both to identify how anthropogenic effects interact with species traits and environmental characteristics to determine observed patterns in alien distribution, abundance, and richness, and to clarify why neglecting anthropogenic effects can generate spurious conclusions. The MAFIA is based largely on insights from studies of plants and birds, but we believe it can be applied to all taxa, and hope that it will stimulate comparative research on other groups and environments. By making the biases in macroecological analyses of biological invasions explicit, the MAFIA offers an opportunity to guide assessments of the context dependence of invasions at broad geographical scales.
Název v anglickém jazyce
MAcroecological Framework for Invasive Aliens (MAFIA): disentangling large-scale context-dependence in biological invasions
Popis výsledku anglicky
Macroecological studies aiming to explain and predict plant and animal naturalisations and invasions, and the resulting impacts, have, to date, rarely considered the joint effects of species traits, environment, and socioeconomic characteristics. To address this, we present the MAcroecological Framework for Invasive Aliens (MAFIA). The MAFIA explains the invasion phenomenon using three interacting classes of factors – alien species traits, location characteristics, and factors related to introduction events – and explicitly maps these interactions onto the invasion sequence from transport to naturalisation to invasion. The framework therefore helps both to identify how anthropogenic effects interact with species traits and environmental characteristics to determine observed patterns in alien distribution, abundance, and richness, and to clarify why neglecting anthropogenic effects can generate spurious conclusions. The MAFIA is based largely on insights from studies of plants and birds, but we believe it can be applied to all taxa, and hope that it will stimulate comparative research on other groups and environments. By making the biases in macroecological analyses of biological invasions explicit, the MAFIA offers an opportunity to guide assessments of the context dependence of invasions at broad geographical scales.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28807X" target="_blank" >GX19-28807X: Makroekologie rostlinných invazí: význam stanovišť a globální syntéza (SynHab)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neobiota
ISSN
1619-0033
e-ISSN
—
Svazek periodika
62
Číslo periodika v rámci svazku
Oct 15
Stát vydavatele periodika
BG - Bulharská republika
Počet stran výsledku
55
Strana od-do
407-461
Kód UT WoS článku
000582928700018
EID výsledku v databázi Scopus
2-s2.0-85097534843