Remote sensing for vegetation science: A virtual special issue on its power and challenges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F22%3A00560955" target="_blank" >RIV/67985939:_____/22:00560955 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1111/avsc.12677" target="_blank" >https://doi.org/10.1111/avsc.12677</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Remote sensing for vegetation science: A virtual special issue on its power and challenges
Popis výsledku v původním jazyce
Remote sensing of vegetation is becoming increasingly relevant as a tool for habitat monitoring and for developing countermeasures against the loss of biodiversity, habitat fragmentation and landscape change, given natural variation in vegetation composition and structure. Of course, remote sensing should be viewed as an exploratory tool for vegetation monitoring that cannot replace field-based surveys which enable scientists to gather much more detailed information on vegetation properties. We hope readers will appreciate our effort to collect interesting articles on the use of remote sensing in applied vegetation science, covering a wide range of interesting themes and innovative methodologies.
Název v anglickém jazyce
Remote sensing for vegetation science: A virtual special issue on its power and challenges
Popis výsledku anglicky
Remote sensing of vegetation is becoming increasingly relevant as a tool for habitat monitoring and for developing countermeasures against the loss of biodiversity, habitat fragmentation and landscape change, given natural variation in vegetation composition and structure. Of course, remote sensing should be viewed as an exploratory tool for vegetation monitoring that cannot replace field-based surveys which enable scientists to gather much more detailed information on vegetation properties. We hope readers will appreciate our effort to collect interesting articles on the use of remote sensing in applied vegetation science, covering a wide range of interesting themes and innovative methodologies.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů