Trash or treasure: Rhizome conservation during drought
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F23%3A00575771" target="_blank" >RIV/67985939:_____/23:00575771 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/23:10475505
Výsledek na webu
<a href="https://doi.org/10.1111/1365-2435.14385" target="_blank" >https://doi.org/10.1111/1365-2435.14385</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/1365-2435.14385" target="_blank" >10.1111/1365-2435.14385</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Trash or treasure: Rhizome conservation during drought
Popis výsledku v původním jazyce
The role of storage carbohydrates in plant carbon economy is currently disputed as possibly passive accumulation when other resources are limiting growth, or part of a conservative growth strategy as insurance for regrowth and stress response. One indication may be the fate of carbohydrates in senescing rhizomes, as either translocated to be retained in the live and growing end of the rhizome or kept within the senescing rhizome end and lost into the soil for it to decompose.To examine carbohydrate storage in senescing rhizomes, eight rhizomatous species were grown in a split-pot design with one compartment containing the forward-growing and younger end of the rhizome and another containing the older end. Both compartments were either watered (control) or the older one was left un-watered (drought treatment) to trigger rhizome senescence and potential carbohydrate translocation. Plant growth, root traits, and non-structural carbohydrate types and concentrations were assessed in four sequential harvests.Drought treatment plants had higher rhizome dry matter content. Younger rhizome parts produced higher new rhizome and above-ground biomass than older rhizome parts. Carbohydrate concentrations in rhizomes remained consistent for both treatments, younger and older rhizome parts, and all harvests, probably because of the translocation of water from the watered to the dry compartment to prevent senescence and rhizome loss.Contrary to expectations, the experimental treatment did not trigger rhizome senescence: plants responded by conserving the rhizome and resources within, rather than by losing their older parts. The invariant composition and concentration of carbohydrates within the rhizome suggest that rhizomes are essential plant organs and the storage carbohydrates they contain are necessary for regrowth after stress.
Název v anglickém jazyce
Trash or treasure: Rhizome conservation during drought
Popis výsledku anglicky
The role of storage carbohydrates in plant carbon economy is currently disputed as possibly passive accumulation when other resources are limiting growth, or part of a conservative growth strategy as insurance for regrowth and stress response. One indication may be the fate of carbohydrates in senescing rhizomes, as either translocated to be retained in the live and growing end of the rhizome or kept within the senescing rhizome end and lost into the soil for it to decompose.To examine carbohydrate storage in senescing rhizomes, eight rhizomatous species were grown in a split-pot design with one compartment containing the forward-growing and younger end of the rhizome and another containing the older end. Both compartments were either watered (control) or the older one was left un-watered (drought treatment) to trigger rhizome senescence and potential carbohydrate translocation. Plant growth, root traits, and non-structural carbohydrate types and concentrations were assessed in four sequential harvests.Drought treatment plants had higher rhizome dry matter content. Younger rhizome parts produced higher new rhizome and above-ground biomass than older rhizome parts. Carbohydrate concentrations in rhizomes remained consistent for both treatments, younger and older rhizome parts, and all harvests, probably because of the translocation of water from the watered to the dry compartment to prevent senescence and rhizome loss.Contrary to expectations, the experimental treatment did not trigger rhizome senescence: plants responded by conserving the rhizome and resources within, rather than by losing their older parts. The invariant composition and concentration of carbohydrates within the rhizome suggest that rhizomes are essential plant organs and the storage carbohydrates they contain are necessary for regrowth after stress.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-10897S" target="_blank" >GA22-10897S: Klonalita u rostlin: neznámý zdroj diverzity společenstev i diverzifikace zásobníku druhů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Functional Ecology
ISSN
0269-8463
e-ISSN
1365-2435
Svazek periodika
37
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2300-2311
Kód UT WoS článku
001014630400001
EID výsledku v databázi Scopus
2-s2.0-85162938013