Predicting trajectories of temperate forest understorey vegetation responses to global change
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F24%3A00588230" target="_blank" >RIV/67985939:_____/24:00588230 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41320/24:100451 RIV/61989592:15310/24:73626547
Výsledek na webu
<a href="https://doi.org/10.1016/j.foreco.2024.122091" target="_blank" >https://doi.org/10.1016/j.foreco.2024.122091</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.foreco.2024.122091" target="_blank" >10.1016/j.foreco.2024.122091</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting trajectories of temperate forest understorey vegetation responses to global change
Popis výsledku v původním jazyce
Predicting forest understorey community responses to global change and forest management is vital given the importance of the understorey for biodiversity conservation and forest functioning. Though substantial effort has gone into disentangling the impact of global change on understorey communities, scarcity of information on sitespecific environmental drivers across large temporal-spatial scales has limited our ability to predict global change effects at specific forest sites. In this study, using vegetation resurvey and soil data from 1363 plots across temperate Europe, we applied a machine learning approach (gradient boosting regression, GBR) to model and predict site-specific responses of four understorey properties to global change. We applied our final GBR models at 8 forest sites in Austria to validate the model performance, predict understorey trajectories, and evaluate the effect of alternative scenarios for future nitrogen(N) deposition, climate change and forest management on the projected trajectories. Our results showed that the R2 value of the four final GBR models on the independent testing dataset ranged between 0.611 and 0.723 and the most important environmental drivers in predicting the trajectory of understorey properties at specific forest sites were soil pH, soil total carbon-to-nitrogen ratio, overstorey shade-casting ability and regional-scale mean annual precipitation. The out-of-sample R2 value of the four final GBR models on the Austrian data ranged between 0.224 and 0.561. The forecasted trajectories for the Austrian forest sites showed that site-specific understorey responses to near-future climate warming were expected to be weak. Under N deposition decreases, the proportion of woody species was predicted to increase, while species richness and total vegetation cover were predicted to decrease. Furthermore, under a closed canopy, the understorey community was predicted to shift towards more woody species and more forest specialists, albeit with reduced species richness and vegetation cover. Given expected warming and declining N
Název v anglickém jazyce
Predicting trajectories of temperate forest understorey vegetation responses to global change
Popis výsledku anglicky
Predicting forest understorey community responses to global change and forest management is vital given the importance of the understorey for biodiversity conservation and forest functioning. Though substantial effort has gone into disentangling the impact of global change on understorey communities, scarcity of information on sitespecific environmental drivers across large temporal-spatial scales has limited our ability to predict global change effects at specific forest sites. In this study, using vegetation resurvey and soil data from 1363 plots across temperate Europe, we applied a machine learning approach (gradient boosting regression, GBR) to model and predict site-specific responses of four understorey properties to global change. We applied our final GBR models at 8 forest sites in Austria to validate the model performance, predict understorey trajectories, and evaluate the effect of alternative scenarios for future nitrogen(N) deposition, climate change and forest management on the projected trajectories. Our results showed that the R2 value of the four final GBR models on the independent testing dataset ranged between 0.611 and 0.723 and the most important environmental drivers in predicting the trajectory of understorey properties at specific forest sites were soil pH, soil total carbon-to-nitrogen ratio, overstorey shade-casting ability and regional-scale mean annual precipitation. The out-of-sample R2 value of the four final GBR models on the Austrian data ranged between 0.224 and 0.561. The forecasted trajectories for the Austrian forest sites showed that site-specific understorey responses to near-future climate warming were expected to be weak. Under N deposition decreases, the proportion of woody species was predicted to increase, while species richness and total vegetation cover were predicted to decrease. Furthermore, under a closed canopy, the understorey community was predicted to shift towards more woody species and more forest specialists, albeit with reduced species richness and vegetation cover. Given expected warming and declining N
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-11487S" target="_blank" >GA21-11487S: Adaptace, vyhnutí, nebo vyhynutí: propojení ekologie společenstev a ekofyziologie k porozumění vlivu vlhkostního deficitu v temperátních lesích</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forest Ecology and Management
ISSN
0378-1127
e-ISSN
1872-7042
Svazek periodika
566
Číslo periodika v rámci svazku
AUG 15
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
122091
Kód UT WoS článku
001262929500001
EID výsledku v databázi Scopus
2-s2.0-85196302959