Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predicting trajectories of temperate forest understorey vegetation responses to global change

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F24%3A00588230" target="_blank" >RIV/67985939:_____/24:00588230 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41320/24:100451 RIV/61989592:15310/24:73626547

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.foreco.2024.122091" target="_blank" >https://doi.org/10.1016/j.foreco.2024.122091</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.foreco.2024.122091" target="_blank" >10.1016/j.foreco.2024.122091</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predicting trajectories of temperate forest understorey vegetation responses to global change

  • Popis výsledku v původním jazyce

    Predicting forest understorey community responses to global change and forest management is vital given the importance of the understorey for biodiversity conservation and forest functioning. Though substantial effort has gone into disentangling the impact of global change on understorey communities, scarcity of information on sitespecific environmental drivers across large temporal-spatial scales has limited our ability to predict global change effects at specific forest sites. In this study, using vegetation resurvey and soil data from 1363 plots across temperate Europe, we applied a machine learning approach (gradient boosting regression, GBR) to model and predict site-specific responses of four understorey properties to global change. We applied our final GBR models at 8 forest sites in Austria to validate the model performance, predict understorey trajectories, and evaluate the effect of alternative scenarios for future nitrogen(N) deposition, climate change and forest management on the projected trajectories. Our results showed that the R2 value of the four final GBR models on the independent testing dataset ranged between 0.611 and 0.723 and the most important environmental drivers in predicting the trajectory of understorey properties at specific forest sites were soil pH, soil total carbon-to-nitrogen ratio, overstorey shade-casting ability and regional-scale mean annual precipitation. The out-of-sample R2 value of the four final GBR models on the Austrian data ranged between 0.224 and 0.561. The forecasted trajectories for the Austrian forest sites showed that site-specific understorey responses to near-future climate warming were expected to be weak. Under N deposition decreases, the proportion of woody species was predicted to increase, while species richness and total vegetation cover were predicted to decrease. Furthermore, under a closed canopy, the understorey community was predicted to shift towards more woody species and more forest specialists, albeit with reduced species richness and vegetation cover. Given expected warming and declining N

  • Název v anglickém jazyce

    Predicting trajectories of temperate forest understorey vegetation responses to global change

  • Popis výsledku anglicky

    Predicting forest understorey community responses to global change and forest management is vital given the importance of the understorey for biodiversity conservation and forest functioning. Though substantial effort has gone into disentangling the impact of global change on understorey communities, scarcity of information on sitespecific environmental drivers across large temporal-spatial scales has limited our ability to predict global change effects at specific forest sites. In this study, using vegetation resurvey and soil data from 1363 plots across temperate Europe, we applied a machine learning approach (gradient boosting regression, GBR) to model and predict site-specific responses of four understorey properties to global change. We applied our final GBR models at 8 forest sites in Austria to validate the model performance, predict understorey trajectories, and evaluate the effect of alternative scenarios for future nitrogen(N) deposition, climate change and forest management on the projected trajectories. Our results showed that the R2 value of the four final GBR models on the independent testing dataset ranged between 0.611 and 0.723 and the most important environmental drivers in predicting the trajectory of understorey properties at specific forest sites were soil pH, soil total carbon-to-nitrogen ratio, overstorey shade-casting ability and regional-scale mean annual precipitation. The out-of-sample R2 value of the four final GBR models on the Austrian data ranged between 0.224 and 0.561. The forecasted trajectories for the Austrian forest sites showed that site-specific understorey responses to near-future climate warming were expected to be weak. Under N deposition decreases, the proportion of woody species was predicted to increase, while species richness and total vegetation cover were predicted to decrease. Furthermore, under a closed canopy, the understorey community was predicted to shift towards more woody species and more forest specialists, albeit with reduced species richness and vegetation cover. Given expected warming and declining N

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-11487S" target="_blank" >GA21-11487S: Adaptace, vyhnutí, nebo vyhynutí: propojení ekologie společenstev a ekofyziologie k porozumění vlivu vlhkostního deficitu v temperátních lesích</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Forest Ecology and Management

  • ISSN

    0378-1127

  • e-ISSN

    1872-7042

  • Svazek periodika

    566

  • Číslo periodika v rámci svazku

    AUG 15

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    122091

  • Kód UT WoS článku

    001262929500001

  • EID výsledku v databázi Scopus

    2-s2.0-85196302959