Multivariate Analysis of Water Quality in the Seybouse River: Implications for Pollution Management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F24%3A00602574" target="_blank" >RIV/67985939:_____/24:00602574 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60076658:12310/24:43908468
Výsledek na webu
<a href="https://doi.org/10.1002/tqem.22342" target="_blank" >https://doi.org/10.1002/tqem.22342</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/tqem.22342" target="_blank" >10.1002/tqem.22342</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multivariate Analysis of Water Quality in the Seybouse River: Implications for Pollution Management
Popis výsledku v původním jazyce
Heavy metal contamination in water bodies is a pervasive and persistent environmental challenge in many parts of the world, especially in developing countries. This study investigates the use of multivariate analysis methods for monitoring variations in water quality along a spatial gradient and for the interpretation of pollution levels at different sampling sites. We assessed the water quality of the Seybouse River and identified possible sources of pollution using three complementary multivariate analysis techniques (PCA, NMDS, and K-means clustering). The results indicate a longitudinal gradient in water quality associated with industrial and agricultural activities in the middle and lower Seybouse River. Physico-chemical and heavy metal analyses show high water turbidity with elevated concentrations of iron and chromium. We show that the contamination stems from four different sources, which can be categorized into different pollution levels. Our results suggest that complementary multivariate methods are a robust approach to identifying and categorizing significant sources of pollution in rivers, enabling the development of future successful water quality management strategies based on water pollution levels. This study highlights the importance of monitoring water quality and taking effective measures to control and mitigate pollution from various sources to ensure the safety of the environment and human health.
Název v anglickém jazyce
Multivariate Analysis of Water Quality in the Seybouse River: Implications for Pollution Management
Popis výsledku anglicky
Heavy metal contamination in water bodies is a pervasive and persistent environmental challenge in many parts of the world, especially in developing countries. This study investigates the use of multivariate analysis methods for monitoring variations in water quality along a spatial gradient and for the interpretation of pollution levels at different sampling sites. We assessed the water quality of the Seybouse River and identified possible sources of pollution using three complementary multivariate analysis techniques (PCA, NMDS, and K-means clustering). The results indicate a longitudinal gradient in water quality associated with industrial and agricultural activities in the middle and lower Seybouse River. Physico-chemical and heavy metal analyses show high water turbidity with elevated concentrations of iron and chromium. We show that the contamination stems from four different sources, which can be categorized into different pollution levels. Our results suggest that complementary multivariate methods are a robust approach to identifying and categorizing significant sources of pollution in rivers, enabling the development of future successful water quality management strategies based on water pollution levels. This study highlights the importance of monitoring water quality and taking effective measures to control and mitigate pollution from various sources to ensure the safety of the environment and human health.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENVIRONMENTAL QUALITY MANAGEMENT
ISSN
1088-1913
e-ISSN
1520-6483
Svazek periodika
34
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
e22342
Kód UT WoS článku
001368232100001
EID výsledku v databázi Scopus
2-s2.0-85208038018