A comparison of type theory with set theory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F19%3A00511657" target="_blank" >RIV/67985955:_____/19:00511657 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-15655-8_12" target="_blank" >http://dx.doi.org/10.1007/978-3-030-15655-8_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-15655-8_12" target="_blank" >10.1007/978-3-030-15655-8_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparison of type theory with set theory
Popis výsledku v původním jazyce
This paper discusses some of the ways in which Martin-Löf type theory differs from set theory. The discussion concentrates on conceptual, rather than technical, differences. It revolves around four topics: sets versus types, syntax, functions, and identity. The difference between sets and types is spelt out as the difference between unified pluralities and kinds, or sorts. A detailed comparison is then offered of the syntax of the two languages. Emphasis is put on the distinction between proposition and judgement, drawn by type theory, but not by set theory. Unlike set theory, type theory treats the notion of function as primitive. It is shown that certain inconveniences pertaining to function application that afflicts the set-theoretical account of functions are thus avoided. Finally, the distinction, drawn in type theory, between judgemental and propositional identity is discussed. It is argued that the criterion of identity for a domain cannot be formulated in terms of propositional identity. It follows that the axiom of extensionality cannot be taken as a statement of the criterion of identity for sets.
Název v anglickém jazyce
A comparison of type theory with set theory
Popis výsledku anglicky
This paper discusses some of the ways in which Martin-Löf type theory differs from set theory. The discussion concentrates on conceptual, rather than technical, differences. It revolves around four topics: sets versus types, syntax, functions, and identity. The difference between sets and types is spelt out as the difference between unified pluralities and kinds, or sorts. A detailed comparison is then offered of the syntax of the two languages. Emphasis is put on the distinction between proposition and judgement, drawn by type theory, but not by set theory. Unlike set theory, type theory treats the notion of function as primitive. It is shown that certain inconveniences pertaining to function application that afflicts the set-theoretical account of functions are thus avoided. Finally, the distinction, drawn in type theory, between judgemental and propositional identity is discussed. It is argued that the criterion of identity for a domain cannot be formulated in terms of propositional identity. It follows that the axiom of extensionality cannot be taken as a statement of the criterion of identity for sets.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-18344Y" target="_blank" >GJ17-18344Y: Logicko-filozofická analýza pojmu identity</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Reflections on the Foundations of Mathematics
ISBN
978-3-030-15654-1
Počet stran výsledku
22
Strana od-do
271-292
Počet stran knihy
494
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—