Logic and Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00524665" target="_blank" >RIV/67985955:_____/20:00524665 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.12775/LLP.2019.023" target="_blank" >http://dx.doi.org/10.12775/LLP.2019.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.12775/LLP.2019.023" target="_blank" >10.12775/LLP.2019.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Logic and Sets
Popis výsledku v původním jazyce
The notion of the extension of a concept has been used in logic for a long time. It is usually considered to be closely connected to the intuitive notion of a set and thus seems as though it should be embedded into set theory. However, there are significant differences between this “logical” concept of set and the notion of set (class) as defined via standard axiomatic systems of set theory, it may, therefore, be quite misleading to consider the two concepts as being continuous with each other. When we look at the writings of Gottlob Frege and consider the development of his attitude to extensions, we can see what the differences consist in and which of the two notions is more apt to be used in foundations of logic. Frege himself eventually rejected sets entirely.
Název v anglickém jazyce
Logic and Sets
Popis výsledku anglicky
The notion of the extension of a concept has been used in logic for a long time. It is usually considered to be closely connected to the intuitive notion of a set and thus seems as though it should be embedded into set theory. However, there are significant differences between this “logical” concept of set and the notion of set (class) as defined via standard axiomatic systems of set theory, it may, therefore, be quite misleading to consider the two concepts as being continuous with each other. When we look at the writings of Gottlob Frege and consider the development of his attitude to extensions, we can see what the differences consist in and which of the two notions is more apt to be used in foundations of logic. Frege himself eventually rejected sets entirely.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-15645S" target="_blank" >GA17-15645S: Logické modely usuzování a argumentace v přirozeném jazyce</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logic and Logical Philosophy
ISSN
1425-3305
e-ISSN
—
Svazek periodika
29
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
25
Strana od-do
71-95
Kód UT WoS článku
000514201100005
EID výsledku v databázi Scopus
2-s2.0-85083792322