Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Topic modeling and classification of scientific disciplines

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F22%3A00566673" target="_blank" >RIV/67985955:_____/22:00566673 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.5281/zenodo.6957149" target="_blank" >https://doi.org/10.5281/zenodo.6957149</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Topic modeling and classification of scientific disciplines

  • Popis výsledku v původním jazyce

    This paper evaluates the possibility of classifying Ph.D. theses into disciplines by using a bottom-up empirical approach based on topic modeling. It examines a dataset of 334810 Ph.D. theses submitted at French universities between 2006 and 2020. In this comprehensive dataset, the variable “discipline” does not rely on any controlled vocabulary or disciplinary ontology. Consequently, there are 23057 unique labels for the variable of which 14538 appear only once. Such situation renders impossible any full-scale analysis of the data from the perspective of scientific disciplines. Our topic model is built atop of abstracts of 285311 of theses in French that include a title, keywords, and abstract. After applying the TopSBM algorithm, we obtained a topic model with 7 levels of hierarchy. The outcomes of our experiments with classification of theses into disciplines suggest that topics derived from purely textual data implicitly capture information about disciplines. This quality of topic modelling can be of great benefit when dealing with datasets where disciplinary information is unavailable or unreliable and where citation records are absent (as it remains the case especially in the Humanities).

  • Název v anglickém jazyce

    Topic modeling and classification of scientific disciplines

  • Popis výsledku anglicky

    This paper evaluates the possibility of classifying Ph.D. theses into disciplines by using a bottom-up empirical approach based on topic modeling. It examines a dataset of 334810 Ph.D. theses submitted at French universities between 2006 and 2020. In this comprehensive dataset, the variable “discipline” does not rely on any controlled vocabulary or disciplinary ontology. Consequently, there are 23057 unique labels for the variable of which 14538 appear only once. Such situation renders impossible any full-scale analysis of the data from the perspective of scientific disciplines. Our topic model is built atop of abstracts of 285311 of theses in French that include a title, keywords, and abstract. After applying the TopSBM algorithm, we obtained a topic model with 7 levels of hierarchy. The outcomes of our experiments with classification of theses into disciplines suggest that topics derived from purely textual data implicitly capture information about disciplines. This quality of topic modelling can be of great benefit when dealing with datasets where disciplinary information is unavailable or unreliable and where citation records are absent (as it remains the case especially in the Humanities).

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50803 - Information science (social aspects)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ20-01752Y" target="_blank" >GJ20-01752Y: Grantový a negrantový výzkum v České republice: scientometrická analýza a modelování témat</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů