Subject-Matter and Intensional Operators II. Applications to the Theory of Topic-Sensitive Intentional Modals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F23%3A00579034" target="_blank" >RIV/67985955:_____/23:00579034 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10992-023-09722-7" target="_blank" >https://doi.org/10.1007/s10992-023-09722-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10992-023-09722-7" target="_blank" >10.1007/s10992-023-09722-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Subject-Matter and Intensional Operators II. Applications to the Theory of Topic-Sensitive Intentional Modals
Popis výsledku v původním jazyce
In frameworks in which topic-theoretic considerations-e.g., tracking subject-matter or topic-are given equal importance with veridical considerations, assigning topics to formulae in a satisfactory way is of critical importance. While intuitions are more-or-less solid for extensional formulae in a propositional language, arriving at a compelling account of the subject-matter of intensional formulae, i.e., formulae including intensional operators, is more challenging. This paper continues previous work on modeling topics of intensional formulae in William Parry’s logic of analytic implication, adapting the general techniques to the framework of topic-sensitive intentional modals (TSIMs) championed by Francesco Berto and his collaborators. As illustrations, we introduce variations on Berto and Peter Hawke’s logic of knowability relative to information (KRI), including a refinement sensitive to topic-theoretic distinctions between knowledge and belief and a refinement capable of internalizing its own properties. Finally, subsystems of Aybüke Ozgun and Berto’s logic of plain hyperintensional belief (PHB) are introduced in which fine-grained distinctions in subject-matter are possible.
Název v anglickém jazyce
Subject-Matter and Intensional Operators II. Applications to the Theory of Topic-Sensitive Intentional Modals
Popis výsledku anglicky
In frameworks in which topic-theoretic considerations-e.g., tracking subject-matter or topic-are given equal importance with veridical considerations, assigning topics to formulae in a satisfactory way is of critical importance. While intuitions are more-or-less solid for extensional formulae in a propositional language, arriving at a compelling account of the subject-matter of intensional formulae, i.e., formulae including intensional operators, is more challenging. This paper continues previous work on modeling topics of intensional formulae in William Parry’s logic of analytic implication, adapting the general techniques to the framework of topic-sensitive intentional modals (TSIMs) championed by Francesco Berto and his collaborators. As illustrations, we introduce variations on Berto and Peter Hawke’s logic of knowability relative to information (KRI), including a refinement sensitive to topic-theoretic distinctions between knowledge and belief and a refinement capable of internalizing its own properties. Finally, subsystems of Aybüke Ozgun and Berto’s logic of plain hyperintensional belief (PHB) are introduced in which fine-grained distinctions in subject-matter are possible.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-23610M" target="_blank" >GM21-23610M: Logická struktura informačních kanálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Philosophical Logic
ISSN
0022-3611
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
29
Strana od-do
1673-1701
Kód UT WoS článku
001090661600001
EID výsledku v databázi Scopus
2-s2.0-85174958537