Estimating asymmetric dynamic distributions in high dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F18%3A00495188" target="_blank" >RIV/67985998:_____/18:00495188 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating asymmetric dynamic distributions in high dimensions
Popis výsledku v původním jazyce
We consider estimation of dynamic joint distributions of large groups of assets. Conventional likelihood functions based on ‘off‐the‐shelf’ distributions quickly become inaccurate as the number of parameters grows. Alternatives based on a fixed number of parameters do not permit sufficient flexibility in modelling asymmetry and dependence. This chapter considers a sequential procedure, where the joint patterns of asymmetry and dependence are unrestricted, yet the method does not suffer from the curse of dimensionality encountered in non‐parametric estimation. We construct a flexible multivariate distribution using tightly parameterized lower‐dimensional distributions coupled by a bivariate copula. This effectively replaces a high‐dimensional parameter space with many simple estimations with few parameters. We provide theoretical motivation for this estimator as a pseudo‐MLE with known asymptotic properties. In an asymmetric GARCH‐type application with regional stock indexes, the procedure provides excellent fit when dimensionality is moderate, and remains operational when the conventional method fails.
Název v anglickém jazyce
Estimating asymmetric dynamic distributions in high dimensions
Popis výsledku anglicky
We consider estimation of dynamic joint distributions of large groups of assets. Conventional likelihood functions based on ‘off‐the‐shelf’ distributions quickly become inaccurate as the number of parameters grows. Alternatives based on a fixed number of parameters do not permit sufficient flexibility in modelling asymmetry and dependence. This chapter considers a sequential procedure, where the joint patterns of asymmetry and dependence are unrestricted, yet the method does not suffer from the curse of dimensionality encountered in non‐parametric estimation. We construct a flexible multivariate distribution using tightly parameterized lower‐dimensional distributions coupled by a bivariate copula. This effectively replaces a high‐dimensional parameter space with many simple estimations with few parameters. We provide theoretical motivation for this estimator as a pseudo‐MLE with known asymptotic properties. In an asymmetric GARCH‐type application with regional stock indexes, the procedure provides excellent fit when dimensionality is moderate, and remains operational when the conventional method fails.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Asymmetric dependence in finance: diversification, correlation and portfolio management in market downturns
ISBN
9781119289012
Počet stran výsledku
52
Strana od-do
169-220
Počet stran knihy
296
Název nakladatele
Wiley
Místo vydání
Chichester
Kód UT WoS kapitoly
—